- 1. (12%) What is the point group of the following molecules:
 - (a) NOCl (nitrosyl chloride) (b) C_{60} (c) PFCl₄ (d) $[Co(phen)_3]^{2+}$ (e) SF₄ (f) S₈
- Determine the irreducible representation of each of the fundamental vibrations of *trans*-[PtCl₂Br₂]²(a square planar structure). And determine which are IR active, and which are Raman active?

D _{2h}	E	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	$\sigma(xy)$	σ(xz)	σ(yz)	1	I
A _R B _{1R} B _{2R} B _{3R} A _" B _{1"} B _{2"} B _{3"}	1 1 1 1 1 1 1	1 -1 -1 1 -1	1 -1 -1 -1 -1 -1	1 -1 -1 -1 -1:	1 1 1 -1 -1 -1	1 -1 -1 -1 -1 -1	1 -1 1 -1 -1 -1	1 -1 -1 -1 -1	R _z R _y R _x	x ² , y ² , z ² xy xz yz

- 3 (5%) Show your understanding of the meaning of the Madelung constant by calculating A for the isolated F⁻ Be²⁺ F⁻ fragment considered as a purely ionic species.
- 4. (10%) Use molecular orbital theory to predict the bond order and the number of unpaired electrons in (a) C_2 (b) O_2^{2-}
- 5. (20%) Select the better choice in each of the following, and explain your selection briefly.
 - (a) Which has the higher first ionization energy? Sc or Cu?
 - (b) Which has the higher electron affinity? \overline{F} or PtF_6
 - (c) Which is stronger Lewis acid?

$$H_3C$$
— P — OH or P — OH

- (d) Which complex is paramagnetic? $[NiCl_4]^{2-}$ or $[PtCl_4]^{2-}$
- (e) Which compound has higher IR-active CO stretching frequency?

$$[Mn(CO)_6]^+$$
 or $[V(CO)_6]^-$

- 6. 10% Determine the number of unpaired electrons, and calculate the magnetic moment for the spin-only contribution and LFSE for each of the following:
 - (a) $[Fe(CN)_6]^{3-}$ (b) $[CoCl_4]^{2-}$
- 7. 5% For complexes of Fe³⁺ and Ag⁺ with SCN⁻, would you expect coordination of SCN⁻ through S or N to these cations? Explain your answer briefly.
- 8. 10% The ¹H NMR spectrum of (C₅H₅)₂Fe(CO)₂ shows only a single peak at room temperature but gives four resonances of relative intensity 5:2:2:1 at low temperature. Explain.
- 9. 8% Predict the metal-metal bond order consistent with 18-electron rule for neutral complexes having the formula $[(OC)_4M(\mu-PR_2)_2M(CO)_4]$ where M=V and Mn.
- 10. 12% Explain the following items.
 - (a) Jahn-Teller distortion
 - (b) Meissner effect
 - (c) Ferromagnetic interaction
 - (d) \triangle and Λ absolute configuration of [Co(en)₃]³⁺