注意:請依序作答 - 1. What is the point group of the following species: (10%) (a) B₂H₆ (b) XeOF₄ (c) PCl₃F₂ (d) Ni(CN)₄²⁻ (e) B₁₂H₁₂²⁻ - 2. Draw the molecular structure of the following species: (10%) - (a) H_3PO_2 (b) B_4H_{10} (c) $S_4N_4F_4$ (d) $Pt(C_2H_4)Cl_3$ - (d) Fe₂(CO)₉ - 3. Predict the major product(s) for the following reactions: (10%) - (a) $Ag^+ + N_3^- \rightarrow$ - (b) PCl₅ + 4H₂O→ - (c) B₃N₃H₆ + 3HCl→ - (d) Closo- $C_2B_9H_{11} + 2e^- \rightarrow$ - (e) Mn₂(CO)₁₀ + H₂→ - 4. Choose and explain: (16%) - (a) Higher first ionization energy: F or F2 - (b) Better oxidizing agent: F2 or Cl2 - (e) Stronger reducing agent in aqueous solution: Li or Na - (d) Better π-acceptor ligand: CS or CO - Which of the following is more basic? Explain. (8%) - (a) (CH₃)₂O or (SiH₃)₂O (b) CH₃ Or CH₃ N - 6. Answer the following: - (a) Which of the following reactions would you expect to have the larger rate at room temperature? Why? (4%) $$2Ce^{4+}_{(aq)} + Hg_2^{2+}_{(aq)} \rightarrow 2Ce^{3+}_{(aq)} + 2Hg^{2+}_{(aq)}$$ $H_3^*O^*_{(aq)} + OH^*_{(aq)} \rightarrow 2H_2O_{(l)}$ - (b) Why is {(η⁵-C₅H₅)₂Fe}⁺PF₆⁻ a good oxidizing reagent while (η⁵-C₅H₅)₂Co is a good reducing reagent? (4%) - (c) When visible light passes through a solution of nickel(II) sulfate, a green solution results. What are the spin allowed transitions responsible for this color? Would you expect a Jahn-Teller distortion for this complex? (6%) - (d) The ligand-to-metal charge transfer bands increase in energy in the series: [CoI₄]⁻ < [CoCI₄]⁻ < [CoCI₄]⁻. Explain. (6%) 7. In complexes with weak field ligands (Δ/B=10) octahedral Co²⁺ exhibit a spectrum with three well separated bands. Make a tentative assignment using the Tanabe-Sugano diagrams and list the assignments in order of decreasing frequency. Would the spectrum of a strong field complex be any different? Describe the spectrum you would expect for a strong field complex. (8%) - 8. Find organic fragments isolobal with: (4%) (a) Cr(CO)₆ (b) Mn(CO)₅⁺ (c) Ni(CO)₃ (d) Co(CN)₅³⁻ - 9. Classify the following oxides as normal spinels or inverse spinels. (6%) 答錯例扣 (a) Fe₃O₄ (b) Mn₃O₄ (c) MnCr₂O₄ - (η⁶-C₆H₆)W(CO)₃ has C_{3v} symmetry. How many infrared-active carbonyl stretching bands would you predict for this compound? (8%) | C,, | E | 2C, | 3σ, | | <u> </u> | |---------------|---|-----|-----|---------------------|---| | Aı
Aı
E | 1 | 1 | -1 | z
R ₄ | $x^{2} + y^{2}, z^{2}$
$(x^{2} - y^{2}, xy)(xz, yz)$ |