請將您的答案寫在答案紙上 - Give the major product for each of the following reactions. (24%)(a) CH₃O CH₃ + HCI ---~__CO₂Et - (9) CH₃CH₂CH₂CH₂Br 1) Mg / Et₂O 2) Q NH₂ 1) NaNO₂, HCI 2) CuCN - Suggest a short, efficient reaction sequences suitable for preparing p-nitrobenzoic acid from toluene and 2. any other reagents. (4%) - The rate of reaction of cis-1-bromo-4-t-butyleyclohexane with methylthiolate ion (CH₃S*)is faster than for the trans isomer. Suggest a reason for this difference. (4%) - What will happen when an alcohol is treated with a strong base, KH? What will happen when an alcohol is treated with a strong acid, HBr? (4%) - Give the molecular formula and determine the number of tertiary carbon atom in the following compound. - Describe the effect of solvent polarity for the following reaction. (4%)CH₃ CH₃ - In the benzoin condensation reaction in CH3OH is promoting by the addition of sodium cyanide, instead of hydroxide or methoxide ion. Explain. (4%) - Draw the structure for the stereoisomer of CH_3 -CH=CH-CH(OH)- CH_3 having E configuration about the double bond and the R configuration at the stereocenter. (4%) - Arrange the following quantities in the order of decreasing. (4%)(a) Molecular polarity: (1) CH₂Cl₂ (2) CH₃OH (3) CCl₄ - (b) boiling point: (1) CH₃CH₂CH₂NH₂ (2) N(CH₃)₃ (3) HCON(CH₃)₂ - 10. In acidic aqueous solution, 2-methyl-1-propanol slowly converted into 2-methyl-2-propanol (t-butyl alcohol). Explain. (4%) ## (背面仍有题目,請繼續作答) - 11. One of the following esters is not suitable for the Claisen condensation reaction. Which one? write structural formulas for the Claisen condensation products of the other. CH₃CH₂CO₂CH₃ PhCHCO₂CH₃ CH₂CH₃ (4%) - A certain alkylbenzene, C₁₁H₁₆, was known not to be oxidize by KMnO₄. Draw the structural formula for this compound. - 13. Aniline (C₆H₅NH₂) is prepared by catalytic hydrogenation of nitrobenzene. Devise a chemical procedure to separated aniline from any unreacted nitrobenzene. (4%) - 14. A student wanted to make methylenecyclobutane and he tried the following reaction. However, he only get a small amount of methylenecyclobutane. Propose a structure for the major product and give mechanism to account for its formation. (4%) $$\bigcirc$$ -CH₂OH $\frac{\text{H}_2\text{SO}_4}{\Delta}$ \bigcirc + other product 15. There are three dioxane isomers: 1,2-dioxane, 1,3-dioxane, 1,4-dioxane. One of these quickly hydrolyzed in dilute acid. Show which isomer fulfill this property and give a mechanism for the acid hydrolysis. (4%) - 16. A compound is either an aldehyde, a ketone, an carboxylic acid, or a nitrile. Identify to which class the compound belongs based on its IR spectrum. (4%) - 17. A ¹H NMR peak measured with a 200 MHz NMR spectrometer. Give the chemical shift, multiplicity, and coupling constant for this peak. (4%) - 18. A compound containing only C, H, and O, gave 80.0% C and 6.7% H on elemental analysis. From the mass spectrum: m/z (relative intensity) 120 (29), 105 (100), 78 (10), 77 (88), 51 (40), 50 (21), 43 (17), deduce the structure for this compound. (4%) - 19. From the ¹H NMR spectrum for a compound, $C_8H_{11}N$: δ 2.2 (6H, s), 3.5 (2H, br s), 6.3 (2H, s), 6.4 (1H, s), deduce the structure for this compound. (4%) - 20. The specific rotation of (S)-2-iodobutane is $+15.90^{\circ}$. Determine the percentage composition of a mixture of (R)- and (S)-2-iodobutane with a specific rotation of -7.95° . (4%)