## 89 學年度國立成功大學化學系物理化學試題共之頁

説明: 1.請依序作答並標明題號

2.計算題必須寫出計算過程,只寫答案不給分  $3.R = 8.314 \, \mathrm{J} \, \mathrm{mol}^{-1} \, \mathrm{K}^{-1} = 1.987 \, \mathrm{cal} \, \mathrm{mol}^{-1} \, \mathrm{K}^{-1}$ 

- 1. Comparing two reactions with different activation energies, for which will the rate increase more rapidly with temperature? why? (5%)
- 2. If a first-order reaction is 20% complete in 20 minutes, how long will it take to be 90% complete? (6%)
- 3. The overall rate constant of a reaction is related to the rate constants of three elementary reactions as  $k = k_1 \sqrt{k_2/k_3}$ . How is the Arrhenius activation energy of the overall rate constant related to those of the elementary reactions? (10%)
- An electronically excited atom can either fluoresce or lose its energy by collision with some other molecules. For example,

$$Hg^{\bullet} \xrightarrow{k_1} Hg + hv$$
 $Hg^{\bullet} + Ar \xrightarrow{k_2} Hg + Ar$ 

These reactions are elementary processes. What is the rate law of each? What is the expression for the fraction of atoms lost by fluorescence at a given pressure of Ar? (14%)

- 5. Calculate  $\Delta G^o$  for each of the following transformations :
  - a.  $H_2O(\ell, 100 \,^{\circ}C) = H_2O(g, 100 \,^{\circ}C)$ , the vapor pressure of  $H_2O$  at 100  $^{\circ}C$  is 101.325 kPa (5%)
  - b.  $H_2O(\ell, 25 \,^{\circ}C) = H_2O(g, 25 \,^{\circ}C)$ , the vapor pressure of  $H_2O$  at 25  $^{\circ}C$  is 3.17 kPa (10%)
- Calculate K (equilibrium constant) at 25 °C for the reaction

$$NO_{(g)} + 1/2 O_{2(g)} = NO_{2(g)}$$

where  $\Delta G^{\circ} = -8.33$  kcal/mol. Which factor, enthalpy or entropy, makes K greater than unity and thereby provides the principal driving force for the reaction ? (14%)

請接下一頁

## 89 學年度 國立成功大學 化學 系 物理化學 試題 共之頁 硕士班招生考試 化學研究所 物理化學 試題 第之頁

- 7. For the process A  $\rightarrow$  B, the value  $\Delta G$  is 30 KJ at 25 °C, and 30.02 KJ at 26 °C. Estimate  $\Delta S$  for the process. (6%)
- 8. For the process A  $\rightarrow$  B, the function  $\Delta H = -50$  KJ and  $\Delta S = -100$  JK<sup>-1</sup> At what temperature is A in equilibrium with B? (5%)
- 9. Give the ground-state electron configuration, bond order, and term state for H<sub>2</sub><sup>-</sup> (6%)
- 10. Please answer the following questions: (12%)
  - (a) de Broglie wavelength
  - (b) time-independent Schrödinger equation
  - (c) Bohr correspondence principle
  - (d) Born-Oppenheimer approximation
  - (e) Franck-Condon principle
  - (f) commute of two operators
- Please describe hard-sphere potential and Lennard-Jones potential
   (7%)