| | 度硕士班 | 戈功 大學
招生考討 | (1) | 上學研究 | 系所 | 無 | 機化學 | 學 | 試; | 題 | 共第 | 7 | J | |--|---|---|--|--|--|---|--|--------------------------------------|------------------------------------|--|-------------------|----------|---| 4 | • | | | | | | | | | | | | | | : | • | | | | | | | | | | | . How man | y spherical | (radial) noc | des does 5 | s orbital h | ave? | | | | | | | | | | . How many s. Select the | y angular no
better choic | odes does 3
ce and exnl | f_{xyz} orbital | have? | riefly | | | | | | | | | | (i). Higher | r ionization | energy: M | g or Al | | iichy. | | | | | | | | | | | er electron a | | | | | | | | | | | | | | . Draw the | molecular s | tructure of | the follow | ing speci | ės. | | | | | | | | | | (i). SNF ₃ (| (S is central | (i | ii). SeOCl4 | (Se is | |) | | | | | | | | | | ne point grou | | | ecies: | | | ///\ | | | | | | | | (1). D31431. | H ₆ (planar) | (1 | ii). N ₂ H ₄ | | | | (iii). B | rF ₅ | | | | | | | | · · · / | | | | | | | | | | | | | | | D _{4h} charact | | | | | | | | | | | | | | . Determine | D _{4h} charact
e the order o | of the group | | | | | | | | | | | | | . Determine . Verify tha | D_{4h} characte the order of the E_g irre | of the group
ducible rep | resentatio | n is ortho
O stretch | gonal t | to the E | u irredu | ucible | represen | tatio | n. | | | | DetermineVerify thaDetermineDetermine | D_{4h} characte the order of the E_g irrect the number of the types of | of the group
ducible rep
er of Ramar | oresentation active C- | O stretch | ing vib | rations | for tra | ins-[Fe | e(CO) ₄ Br | ٦]. | | 2 | | | Determine Verify tha Determine | D_{4h} characte the order of the E_g irrect the number of the types of | of the group
ducible rep
er of Ramar | oresentation active C- | O stretch | ing vib | rations | for tra | ins-[Fe | e(CO) ₄ Br | ٦]. | | T) | | | Determine Verify tha Determine Determine | D_{4h} characte the order of the E_g irrect the number of the types of | of the group
educible reper of Ramar
of hybridiza | presentation active Cation possi | O stretch
ble for a [| ing vib
[PtCl ₄] | rations
²⁻ comp | for <i>tra</i>
lex (co | ins-[Fo
onside: | e(CO) ₄ Br | ٦]. | | ס | | | Determine Verify that Determine Determine bonding o $\frac{D_{4h}}{A_{Ig}}$ | D_{4h} characte the order of the E_g irrect the number of the types of | of the group ducible reper of Ramar of hybridiza $\frac{C_2}{1}$ | presentation active C-
ation possion $\frac{C_2'}{1}$ | O stretch ble for a [| ing vib
[PtCl ₄]
2S ₄ | orations $\frac{\sigma_{l}}{\sigma_{l}}$ | for tra | ins-[Fe | e(CO) ₄ Br | ٦]. | | 5 | | | Determined Verify that Determined Determined bonding of $\frac{D_{4h}}{A_{Ig}}$ | D_{4h} character the order of at the E_g irrest the number of the types conly). $\frac{E}{1} = \frac{2C_4}{1}$ | of the group ducible reper of Ramar of hybridiza $\frac{C_2}{1}$ | presentation active C-nation possion C_2 | O stretch ble for a [i l | ing vib
PtCl ₄]
2S ₄
I
I | orations $\frac{\sigma_h}{1}$ | for <i>tra</i>
lex (co | $\frac{2\sigma_d}{1}$ | e(CO) ₄ Br | used $\begin{bmatrix} x^2 + y \end{bmatrix}$ | I in (z^2, z^2) | . | | | Determine Verify that Determine Determine bonding of $\frac{D_{4h}}{A_{1g}}$ $\frac{A_{2g}}{B_{1g}}$ | D_{4h} character the order of the E_g irrest the number of the types conly). $\frac{E}{1} = \frac{2C_4}{1}$ $\frac{1}{1} = \frac{1}{1}$ | of the group ducible reper of Ramar of hybridiza C2 20 1 1 1 | presentation active C-ation possion C_2 | O stretch ble for a [i l 1 | ing vib
[PtCl ₄]
2S₄
I
I
-1 | σ_{l} comp $\frac{\sigma_{l}}{l}$ | for trace $\frac{2\sigma_v}{1}$ | $\frac{2\sigma_d}{1}$ -1 | e(CO) ₄ Br
r hybrids | used $\begin{bmatrix} x^2 \\ x^2 + y \\ x^2 - y \end{bmatrix}$ | I in (z^2, z^2) | | | | Determined Verify that Determined Determined bonding of $\frac{D_{4h}}{A_{Ig}}$ $\frac{D_{2g}}{A_{2g}}$ $\frac{B_{Ig}}{B_{2g}}$ | D_{4h} character the order of the E_g irrest the number of the types types of the types of types of the types of the types of the types of types of the types of the types of o | of the group ducible reper of Ramar of hybridization $\frac{C_2}{1}$ | presentation active C-nation possion C_2 | O stretch ble for a [| ing vib
[PtCl ₄]
2S ₄
1
1
-1
-1 | σ_h | for traveled for $traveled for traveled for$ | $\frac{2\sigma_d}{1}$ -1 | e(CO) ₄ Br
r hybrids | x ² +y
x ² -y
xy | l in c | | | | Determined Verify that Determined Determined bonding of D_{4h} A_{1g} A_{2g} B_{1g} B_{2g} | D_{4h} character the order of the E_g irrest the number of the types conly). $\frac{E}{1} = \frac{2C_4}{1}$ $\frac{1}{1} = \frac{1}{1}$ | of the group ducible reper of Ramar of hybridization $\frac{C_2}{1}$ of $\frac{2C_2}{1}$ of $\frac{1}{1}$ o | presentation active C-ation possion C_2 | O stretch ble for a [i 1 1 1 1 2 | ing vib
PtCl ₄]
2S ₄
1
1
-1
-1
0 | σ _h 1 1 1 1 -2 | for trailex (cooler for $trailex$) lex (cooler for $trailex$) 1 -1 1 -1 0 | $\frac{2\sigma_d}{1}$ -1 -1 0 | e(CO) ₄ Br
r hybrids | used $\begin{bmatrix} x^2 \\ x^2 + y \\ x^2 - y \end{bmatrix}$ | l in c | | | | Determine Verify that Determine bonding of D_{4h} A_{1g} A_{2g} B_{1g} B_{2g} E_{g} A_{1u} | D_{4h} character the order of the E_g irresponds the types conly). $ \frac{E}{1} = \frac{2C_4}{1} $ $ \frac{1}{1} = \frac{1}{1} $ $ \frac{1}{2} = 0 $ | of the group ducible report of Ramar of hybridization of hybridization of the following followin | presentation active C-nation possion C_2 | O stretch ble for a [| ing vib
PtCl ₄] 2S ₄ 1 1 -1 -1 0 -1 | rations 2- comp σ _i 1 1 1 1 -2 -1 | for tradelex (collection) for $\frac{2\sigma_v}{1}$ for $\frac{2\sigma_v}{1}$ for $\frac{1}{1}$ $\frac{1}{1$ | $\frac{2\sigma_d}{1}$ -1 -1 -1 | Rz (Rx,Ry) | x ² +y
x ² -y
xy | l in c | | | | Determined Verify that Determined Determined bonding of D_{4h} A_{1g} A_{2g} B_{1g} B_{2g} E_{g} A_{1u} A_{2u} | D_{4h} character the order of the E_g irrest the number only). $ \frac{E}{1} = \frac{2C_4}{1} $ $ \frac{1}{1} = \frac{1}{1} $ $ \frac{1}{2} = \frac{1}{2} $ $ \frac{1}{2} = \frac{1}{1} $ | of the group ducible report of Ramar of hybridization of hybridization of the following followin | presentation active C-nation possion C_2 | O stretch ble for a [i 1 1 1 2 -1 -1 | ing vib
PtCl ₄] 2S ₄ 1 1 -1 -1 0 | σ _h 1 1 1 -2 -1 | for trablex (co | $\frac{2\sigma_d}{1}$ -1 -1 1 0 -1 1 | e(CO) ₄ Br
r hybrids | x ² +y
x ² -y
xy | l in c | | | | Determined Verify that Determined Determined Determined bonding of D_{4h} A_{1g} A_{2g} B_{1g} B_{2g} E_{g} A_{1u} A_{2u} B_{1u} | D_{4h} charactee the order of the E_g irrelet the number only). $ \begin{array}{cccc} E & 2C_4 \\ \hline 1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 2 & 0 \\ 1 & 1 \\ 1 & 1 \end{array} $ | of the group ducible report of Ramar of hybridization | presentation active C-ation possion C_2 | O stretch ble for a [i 1 1 1 2 -1 | ing vib
PtCl ₄] 2S ₄ 1 1 -1 -1 0 -1 | rations 2- comp σ _i 1 1 1 1 -2 -1 | for tradelex (collection) for $\frac{2\sigma_v}{1}$ for $\frac{2\sigma_v}{1}$ for $\frac{1}{1}$ $\frac{1}{1$ | $\frac{2\sigma_d}{1}$ -1 -1 -1 | Rz (Rx,Ry) | x ² +y
x ² -y
xy | l in c | · | | (背面仍有題目,請繼續作答) Calculate the *emf* for $Cu(OH)_2 \rightarrow Cu$ in 1 M base. b. Calculate the ideal ratio of r_M/r_X for cation-anion and anion-anion contact for an octahedral arrangement of anions around a cation. (Hint: the NaCl structure) 5% ## 國立成功大學 5 90 學年度 頁 化學研究 無機化學 試題 碩士班招生考試 2 頁 6.a. Determine the number of unpaired electrons and calculate the magnetic moment for the spin-only contribution and the LFSE for [Ru(NH₃)₆]³⁺. 6% b. For which d'' configurations would no Jahn-Teller splitting be expected for the tetrahedral case 4% (ignore possible low-spin cases)? $(n = 1 \sim 10)$ 7.a. Identify the ground-state terms with the spin multiplicity for Fe²⁺ in the following cases: 6% (i) a free ion (ii) an high-spin octahedral complex (iii) a low-spin octahedral complex b. Show the number of d-d transition bands in terms of spectrum terms for [Ni(H₂O)₆]²⁺. Half-lives greater than 1 day $[Fe(CN)_6]^{4-}$ cytochrome c 8.a. Consider the half-lives (in minutes) toward substitution of the pair of complexes: Explain the differences in half-lives in terms of the electronic structures. 9.a. Classify the following species as closo, nido, arachno or hypho structure type. 10. Predict the transition metal-containing products of the following reactions: c. cis-Re(CH₃)(PEt₃)(CO)₄ + 13 CO \rightarrow (show all expected products, percent of each) b. Activation volume (ΔV) for acid hydrolysis of cis-[PtCl₂(NH₃)₂] is -9.5 (at 45°C) cm³/mol. How is the value consistent with what you know about the mechanism for square-planar (iii) Rh₆(CO)₁₆ coenzyme B₁₂ Half-lives less than 1 minute [Fe(H₂O)₆]³⁺ chlorophyll a (ii) $C_4B_2H_6$ b. Which of the following enzymes contains Fe? a. trans-Ir(CO)Cl(PPh₃)₂ + H₂ \rightarrow b. $W(CO)_6 + C_6H_6Li \rightarrow$ substitution? (i) $B_{10}H_{14}$ hemoglobin 4% 6% 4% 6% 4% 2% 2% 6%