
注意事項: 1. 答案一律寫在答案卷上, 否則不予計分。

- 2. 請標明題號依序作答,不必抄題。
- 3. 試題應隨同試卷繳回,不得攜出試場。
- 1.(a) The hydride ion (H⁻) and methoxide ion (CH₃O⁻) have much greater affinities for H⁺ than the OH⁻ ion does. Write equations for the reactions that occur when NaH and NaOCH₃ are dissolved in water. (6 %)
 - (b) You are given a compound that is either iron(II) sulfate or iron(III) sulfate. How could you determine the identity of the compound by using a dilute solution of potassium permanganate? (6 %)
- 2. (a) What do we mean when we say that a 4s electron is more penetrating than a 3d electron? (4 %)
 - (b) Explain why a graph of ionization energy versus atomic number (across a row) is not linear. Where are the exceptions? Explain why they occur. (8 %)
- 3. Determine the point group for each of the following species. (8 %)
 (a) CH₂FCl (b) NSF₃ (c) ClOF₄⁻ (d) IO₂F₂
- 4. The following are ^{31}P nmr spectra of PF₄(NMe₂), $I_P = I_F = 1/2$. No J_{P-H} coupling is ever resolved.

- (a) Explain the low temperature spectrum. (4 %)
- (b) Explain the high temperature spectrum. (2 %)
- (c) On the basis of these spectra, what can you say about the mechanism of exchange? (6 %)

(背面仍有題目.請繼續作答)

無機化學

5. The ion H₃⁺ has been observed, but its structure has been the subject of some controversy. Prepare molecular orbital energy level diagrams for H₃⁺, assuming a cyclic structure. (8 %)

D_{3h}	E	2C ₃	$3C_2$	σ_h	2S ₃	$3\sigma_v$		
A_1'	1	1	1	ı	1	1		$x^2 + y^2, z^2$
A_2^{\prime}	l l	1	– 1	t	i	- i	R.	
E'	2	- 1	0	2	-1	0	(x, y)	(x^2-y^2,xy)
A_1'	l l	1	1	- 1	-1	- 1		
A_2''	1	1	-1	- 1	-1	1	z	
$E^{\bar{r}}$	2	- 1	0	-2	1	0	(R_z, R_o)	(xz, yz)

- 6. Why are octahedral Mn^{2+} complexes (weak field) much less intensely colored than those of Cr^{3+} ? (8 %)
- 7. The d^2 ions CrO_4^{4-} , MnO_4^{3-} , FeO_4^{2-} , and RuO_4^{2-} have been reported.
 - (a) Which of these has the largest value of Δ_t ? Explain briefy. (4 %)
 - (b) The change-transfer transitions for the first three complexes occur at 43,000, 33,000, and 21,000 cm⁻¹, respectively. Are these more likely ligand to metal or metal to ligand change-transfer transitions? Explain briefy. (6 %)
- 8. The ion Re₂Cl₈²⁻ is made up of two square planar ReCl₄ units joined by a Re-Re bond. The two planes are parallel and the chlorines are eclipsed.
 - (a) Determine the point group for the ion. (2 %)
 - (b) In Re₂Cl₈²⁻, the transition of an electron from the b_{2g} orbital to the b_{1u} orbital is a d-d transition in a molecule with a center of inversion. Is it allowed? Explain. (8 %)
- 9. Of the compounds Cr(CO)₅(PF₃) and Cr(CO)₅(PCl₃), which would you expect to have :
 - (a) the shorter C-O bonds?
 - (b) the higher energy Cr-C stretching bands in the infrared spectrum? Explain your results. (8 %)
- 10. Give structural formulas for A through D:

Na/Hg Br₂ LiAlH₄

$$(\eta^5-C_5H_5)_2Fe_2(CO)_4$$
 (A) \longrightarrow B \longrightarrow C \longrightarrow D
 $\nu_{co} = 1961, 1942, 1790 \text{ cm}^{-1}$

B has strong IR bands at 1880 and 1830 cm⁻¹; **D** has a ¹H NMR spectrum consisting of two singlets of relative intensity 1:5 at approximately δ -12 ppm and δ 5 ppm, respectively. (12 %)