4%

科目:無機化學

| 1-1.<br>1-2. | Determine the number of microstates for the $p^I d^I$ configuration.<br>Construct a microstate table and reduce the table to its constituent term symbols (Russell-Saunders terms, ${}^{2S+I}L_J$ ) for carbon atom.<br>Identify the ground-state term symbol ( ${}^{2S+I}L_J$ ) of Co <sup>2+</sup> free ion. | 2%<br>6%<br>2% |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2-1.         | Write down all possible Lewis structures for thiazyl dichloride ion, NSCl <sub>2</sub> -, which is                                                                                                                                                                                                             | 6%             |
| 2-2.         | isoelectronic with OSCl <sub>2</sub> .  Which of these species has the smaller Cl-S-Cl angle? Explain.  (A) NSCl <sub>2</sub> <sup>-</sup> (B) OSCl <sub>2</sub>                                                                                                                                               | 4%             |
| 3.           | Show all symmetry elements and identify the point group of the following:<br>(1) $C_{60}$ (2) $Os_2Cl_8^{2-}$                                                                                                                                                                                                  | 10%            |
| 4-1.         | AB <sub>5</sub> is a square pyramidal structure. Using the group theory method, determine the possible hybridization schemes for the central A atom in AB <sub>5</sub> .                                                                                                                                       | 10%            |
| 4-2.         | Which of these schemes would you expect to be most unlikely? <b>Explain</b> your answer.                                                                                                                                                                                                                       |                |

| $\overline{C_{4v}}$ | Е | 2C <sub>4</sub> | C <sub>2</sub> | $2\sigma_{\rm v}$ | $2\sigma_d$ |       |                |
|---------------------|---|-----------------|----------------|-------------------|-------------|-------|----------------|
| $\overline{A_I}$    | 1 | 1               | 1              | 1                 | 1           | z     | $x^2+y^2, z^2$ |
| $\overline{A_2}$    | 1 | 1               | 1              | -1                | -1          |       |                |
| $\overline{B_I}$    | 1 | -1              | 1              | 1                 | -1          |       | $x^2-y^2$      |
| $\overline{B_2}$    | 1 | -1              | 1              | -1                | 1           |       | ху             |
| F.                  | 2 | 0               | -2             | 0                 | 0           | (x,v) | (xz,yz)        |

|                  |    |    |   |       | A J     |
|------------------|----|----|---|-------|---------|
| $ B_2 $   1   -1 | 1  | -1 | 1 |       | xy      |
| E 2 0            | -2 | 0  | Λ | (v v) | (xz,yz) |

- (A) pyridine < 2-t-butylpyridine < 2,6-dimethylpyridine
- (B) 2-t-butylpyridine < 2,6-dimethylpyridine < pyridine
- (C) 2,6-dimethylpyridine < 2-t-butylpyridine < pyridine
- (D) pyridine < 2,6-dimethylpyridine <2-t-butylpyridine
- 4% KF behaves as a base in BrF<sub>3</sub>, whereas SbF<sub>5</sub> behaves as an acid. 5-2. Write balanced chemical equations for these acid-base reactions of fluorides with BrF3
- 4% Which trend of Madelung constant (A) for lattice of NaCl, ZnS, and CsCl is correct? 5-3.
  - $(A) A_{NaCl} > A_{ZnS} > A_{CsCl}$
- (B)  $A_{ZnS} > A_{CsCl} > A_{NaCl}$
- (C)  $A_{CsCl} > A_{NaCl} > A_{ZnS}$
- (D)  $A_{CsCl} > A_{ZnS} > A_{NaCl}$

Explain your answer.

- 4% 5-4. Calculate the potential for the NO → N<sub>2</sub>O reaction in acidic solution, given the  $NO \rightarrow N_2 \qquad \varepsilon^0 = 1.68 \text{ V}$ following:  $\varepsilon^0 = 1.77 \text{ V}$
- 4% How many stereoisomers of an octahedral complex Cr(ABA)(H<sub>2</sub>O)(OH)Br are possible? 5-5. (ABA = the tridentate ligand  $H_2N-CH_2CH_2-PH-CH_2CH_2-NH_2$ ) How many of these consist of pairs of enantiomers?
- Explain why tetrahedral geometry is more stable for Co(II) than for Ni(II) by calculating 6-1. the ligand stabilization energies for octahedral and tetrahedral Co(II) and Ni(II).

編號: 661 系所:化學系 科目:無機化學

6-2. Which of the following complexes will not show Jahn-Teller distortion? Explain. 4%

- (A)  $Ni(NH_3)_6^{2+}$
- (B)  $Cu(NH_3)_6^{2+}$
- (C)  $Mn(H_2O)_6^{2+}$
- (D)  $Ti(H_2O)_6^{3+}$

- (E)  $Cr(H_2O)_6^{3+}$
- (F)  $Co(NH_3)_6^{2+}$
- (G)  $CoF_6^{3-}$
- (H) MnF<sub>6</sub><sup>3</sup>
- The UV spectra of  $[Cr(NH_3)_6]^{3+}$  and  $[Cr(NH_3)_5Cl]^{2+}$  are given below. 7-1. Which spectrum is assigned to be UV spectrum of Cr(NH<sub>3</sub>)<sub>5</sub>Cl<sup>2+</sup>? Give two main reasons

6%



- 7-2. How does each of the following modifications affect the rate of a Pt or Pd square-planar complex substitution reaction?
- 6%

- (i) Addition a bulky substituent to a cis ligand.
- (ii) Increasing the positive charge on the complex.
- The infrared spectra of [Fe(CO)(CN)<sub>5</sub>]<sup>3-</sup>, trans-[Fe(CO)<sub>2</sub>(CN)<sub>4</sub>]<sup>2-</sup> and cis-[Fe(CO)<sub>2</sub>(CN)<sub>4</sub>]<sup>2-</sup> 7-3. are shown in the figure below.

Which of the following assignments is correct with their spectra?

- (A) 1:  $[Fe(CO)(CN)_5]^{3-}$ , 2:  $trans-[Fe(CO)_2(CN)_4]^{2-}$ , 3:  $cis-[Fe(CO)_2(CN)_4]^{2-}$ (B) 1:  $[Fe(CO)(CN)_5]^{3-}$ , 2:  $cis-[Fe(CO)_2(CN)_4]^{2-}$ , 3:  $trans-[Fe(CO)_2(CN)_4]^{2-}$
- (C) 1: cis-[Fe(CO)<sub>2</sub>(CN)<sub>4</sub>]<sup>2-</sup>, 2: trans-[Fe(CO)<sub>2</sub>(CN)<sub>4</sub>]<sup>2-</sup>, 3: [Fe(CO)(CN)<sub>5</sub>]<sup>3-</sup>
- (D) 1:  $trans-[Fe(CO)_2(CN)_4]^2$ , 2:  $[Fe(CO)(CN)_5]^3$ , 3:  $cis-[Fe(CO)_2(CN)_4]^2$



7-4.

6%



Propose a synthesis for and MeI.

, by starting with Mn<sub>2</sub>(CO)<sub>10</sub>, PPh<sub>3</sub>, Na

Classify the Ge<sub>9</sub><sup>4-</sup> as *closo*, *nido*, or *arachno* and explain why? 7-5.

3%

7-6. Draw an organic compound  $(C_mH_n)$  isolobal with a carbene complex  $Fe(CO)_4(CH_2)$ .

3%