編號:

56

國立成功大學九十八學年度碩士班招生考試試題

共之頁,第/頁

系所組別: 化學系

考試科目: 物理化學

考試日期:0307,箭次:1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

Your answers must be written on the "Answer Sheet" and must be arranged in the order of the numbered questions (1-12)

$$R_{1,0}(H) = 2\left[\frac{Z}{a_o^3}\right]^{1/2} \exp(-Zr/a_o); \quad \int_0^\infty x^n \exp(-ax) = \frac{n!}{a^{n+1}}$$

- 1. Show that the change of entropy (ΔS) for a perfect gas is greater than that for a van der Waals gas following the state function $p = \frac{nRT}{V nb} \frac{n^2}{V^2}$.
- Describe the relative extents of "the variation of the Gibbs energy with the temperature of a substance" in different phases (gas, liquid and solid) by their G-T plots.
- 3. The Joule coefficient (μ_J) is defined as $\mu_J = (\partial T/\partial V)_U$. Show that this thermodynamic quantity can be related to the expansion coefficient and isothermal compressibility by $\mu_J C_V = p \alpha T/\kappa_T$.
- 4. Calculate the vapor pressure of benzene at 293K using the data for benzene: $\Delta_{vap}H^o = 30.8 \text{ kJmol}^{-1}$ at the normal boiling point 353K.
- 5. Describe (a)the phase rule, (b)the level rule and (c)the eutectic mixture, respectively.
- 6. Derive the rate law for the Michaelis-mechanism of enzyme catalysis and give the Lineweaver-Burk plot of 1/v against 1/[S]_o.

 8%
- 7. Derive the rate law for the decomposition of N₂O₅ generating NO₂ and O₂ based on the mechanism:

編號:

56

國立成功大學九十八學年度碩士班招生考試試題

共之 頁 第2頁

系所組別: 化學系

考試科目: 物理化學

考試日期:0307,節次:1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

- 8. a) Show that the deBroglie $(\lambda = h/p)$ can rationalize the Bohr's postulation of the quantization of the angular momentum $(mvr = n\hbar)$.
 - b) Show that the deBroglie's equation can be derived by solving the Schrodinger equation for the one-dimensional particle-in-a-box model. 12%
- 9. (a) Give the origins of the Heisenberg uncertainty principle based on the nature of matter and on the quantum mechanics (hint: operators).
 - (b) How does the Heinsenberg's uncertainty principle account for the spectralwidths, e.g. in NMR spectroscopy?
- 10. (a) Give the Hamiltonians for the He atom and the molecular cation H_2^+ , respectively.
 - (b) Which of the Schrodinger equations, respectively, for the above two systems can not be solved exactly? And why?
 - (c) Name the two approximate methods that can be employed to treat the trouble in problem 10(b).
- 11. Evaluate the mean radius of the 1s orbital of hydrogen orbital.
- 12. (a)How does MO theory account for the polarity of the HF molecule.
 - (b) Explain, employing the MO theory, the relative ionic characters of the CH bonds in H₃CCH₃, H₂CCH₂ and HCCH molecules. 8%