編號: 65 國立成功大學 104 學年度碩士班招生考試試題

系所組別:生命科學系乙組

考試科目:分子生物學 考試日期:0212,節次:3

第1頁,共2頁

- A - A - A - A - A - A - A - A - A -
※ 考生請注意:本試題不可使用計算機。 所有考題均請於答案卷(卡)作答 ,於本試題紙上作答者
不予計分。
一. 選擇題,共 4 題,每題 5 分,共 20 分
1. A method that uses an antibody to detect a specific protein is called
a. SDS-PAGE
b. Western blot
c. Mass Spectrometry
d. Yeast two hybrid system
2. When a virus displays multiple peptide sequences, this is termed
a. phage array
b. yeast two hybrid system
c. phage display
d. protein microarray
Reverse transcriptase generates cDNA from a template.
a. DNA
b. transfer RNA
c. messenger RNA
d. cDNA
4. All of the following are second generation sequencing methods except .
a. 454 sequencing
b. Illumina/Solexa sequencing
c. SOLiD/Applied Biosystems method
d. Sanger sequencing
二. 問答題,共 10 題,共 60 分
1. Why must a shuttle vector possess two origins of replication instead of one? (10%)
2. What is the proteome ? (10%)
3. What is linkage analysis ? (5%)
4. How did Hershey and Chase proved that DNA is the genetic material? (5%)
5. Please justify the biological reason for the presence of uracil in RNA but not in DNA. (5%)
6. Please describe the components of a nucleosome . (5%)

9. Please explain why the recombination events occurred more frequently around the Chi site in E.

7. Please describe the role of a **helicase** at a replication fork. (5%)

8. Please describe the **mismatch repair** in *E. coli.* (5%)

編號: 65

國立成功大學 104 學年度碩士班招生考試試題

系所組別:生命科學系乙組

考試科目:分子生物學

考試日期:0212,節次:3

第 2 頁,共 2 頁
coli? (5%)
10. Please describe the mechanistic steps of Cre recombinase performed in site-specific
recombination. (5%)
••
三.填充題, 共 5 題,每題 4 分,共 20 分,請以英文作答,以中文作答不計分
1. The genetic code is fairly consistent among all organisms. The term often used to describe such consistency in the code is
2. The enzymerelates to peptide bond formation during protein synthesis.
3 are clusters of ribosomes held together by an mRNA.
4. The nature of replication of the chromosome in <i>E. coli</i> is and fixed point of initiation.
5. DNA polymerase is thought to add nucleotides in the place of the primer RNA after it is
removed.