注意事項:本試題有 8 大題,答案一律寫在試卷上, 請標明題號,依序作答。

- 1. Two genes control color in corn snakes as follows: O-B- snakes are brown, O-bb are orange, ooB- are black, and oobb are albino. An orange snake was mated to a black snake, and a large number of F₁ progeny were obtained, all of which were brown. When the F₁ snakes were mated to one another, they produced 100 brown offspring, 25 orange, 22 black and 13 albino.
 - a) What are the genotypes of the F_1 snakes? (4%)
 - b) What proportions of the different colors would have been expected among the F₂ snakes if the two loci assorted independently? (4%)
- 下圖為某二家族的族譜之遺傳模式為體染色體隱性,實心符號為患有疾病者,○一代表正常女性,○一代表正常男性。所有與此二家族結婚者皆不含有此疾病之不正常對偶基因。

a)若 A 與 B 結婚,則他們第一胎生出患有此疾病之小孩的機率為何? (4%) b)若 C 與 D 結婚,則他們第一胎生出患有此疾病之小孩的機率為為何?(4%)

- 3. In one of Mendel's dihybrid crosses, one researcher observed 315 round yellow, 108 round green, 101 wrinkled yellow, and 32 wrinkled green F_2 plants. Analyze these data using χ^2 test to see if:
 - a) They fit a 9:3:3:1 ratio. (show the χ^2 , df and p value, respectively) (6%),

25

b) The yellow: green data fit a 3:1 ratio. (show the χ^2 , df and p value, respectively) (6%).

	Probabilities (p)					
df	0.90	0.50	0.20	0.05	0.01	0.001
1	0.02	0.46	1.64	3.84	6.64	10.83
2	0.21	1.39	3.22	5.99	9.21	13.82
3	0.58	2.37	4.64	7.82	11.35	16.27
4	1.06	3.36	5.99	9.49	13.28	18.47
5	1.61	4.35	7.29	11.07	15.09	20.52
6	2.20	5.35	8.56	12.59	16.81	22.46
7	2.83	6.35	9.80	14.07	18.48	24.32
8.	3.49	7.34	11.03	15.51	20.09	26.13
9	4.17	8.34	12.24	16.92	21.67	27.88
10	4.87	9.34	13.44	18.31	23.21	29.59
15	8.55	14.34	19.31	25.00	30.58	37.30

16.47 24.34 30.68 37.65 44.31 52.62

- 4. When random samples of human DNAs were digested with *Eco*RI and examined for RFLPs using a cloned anonymous sequence called d17, three types of band patterns (shown below) were seen.
 - a) Make a map of the region recognized by this probe showing the position of restriction sites. (6%)
 - b) Which of the restriction sites on your map are varying in the population? (3%)
 - c) Which patterns below represent homozygous and which represent heterozygous individuals? (6%)

- 5. a) Why is DNA synthesis expected to be more complex in eukaryots than in bacteria? How is DNA synthesis similar in two types of organisms? (6%)
 - b) The DNA of the bacterial virus T4 produces a $Cot_{1/2}$ of about 0.5 and contains 10^5 nucleotide pairs in its genome. How many nucleotide pairs is present in the genome of the bacterium *E. coli*, whose DNA produce $Cot_{1/2}$ value of 10.0? (4%)
- 6. a) Clones of three adjacent genes involved in arginine biosynthesis have been isolated from a bacterium. If these three genes together make up an operon, what result do you expect when you use the DNA from each of these genes as probes in a Northern analysis? What result do you expect if the three genes do not make up an operon? (6%)
 - b) Explain the difference between alternative splicing and RNA editing. (5%)
- 7. A recessive X-linked character appears in 40 percent of males and 16 percent of Females in a randomly interbreeding population. Assume only two alleles are present. What are the allele frequencies? How many females are heterozygotes? How many males are heterozygotes? (6%)
- 8. Select the best answer for the following questions. (30%)
- 8-1. In an organism with 52 chromosomes how many bivalents would be expected to form during meiosis?
 - A. 52
 - B. 26
 - C. 13
 - D. 104
 - E. 208
- 8-2. One explanation for organelle inheritance is that
 - A. Mitochondria and chloroplasts lack DNA and are therefore dependent on the maternal cytoplasmic contributions.
 - B. Mitochondria and chloroplasts have DNA which is subject to mutation.
 - C. Organelles such as mitochondria are always "wild type."
 - D. Chloroplasts, for example, are completely dependent on the nuclear genome for components.
 - E. None of the above.

- 8-3. A genomic condition which may be responsible for some forms of fragile X syndrome as well as Huntington disease involves
 - A. F plasmid inserted into the FMR-1 gene.
 - B. Various lengths of trinucleotide repeats.
 - C. Multiple breakpoints fairly evenly dispersed along the X chromosome.
 - D. Multiple inversions in the X chromosome.
 - E. Single translocation in the X chromosome.
- 8-4. The following segment of DNA occurs within the protein-coding region of a gene: 5'-GGAACTCTAGGGGCTG-3'
 3'-CCTTGAGATCCCCGAC-5'

Which one of the following is true:

- A. The upper strand must be the transcribed strand.
- B. The lower strand must be the transcribed strand.
- C. Either could be the transcribed strand.
- D. Neither strand can be transcribed because both contain stop codons.
- 8-5. which of the following is not a component of the transcriptional system in cells?
 - A. RNA polymerase
 - B. DNA
 - C. Promoter
 - D. Shine-Dalgarno sequence
 - E. Hairpin loop
- 8-6. In E. coli a region of a gene with repeats of the sequence CTGG will be prone to
 - A. Reversion
 - B. Missense mutation
 - C. Nonsense mutation
 - D. Frameshift mutation
 - E. Amber mutation
- 8-7. Gene conversion
 - Λ . is caused by the repair of heteroduplex DNA
 - B. usually leads to a lethal mutation
 - C. is not associated with recombination
 - D. causes rolling-circle replication
 - E. is required for the cell to complete replication

8-8. In yeast four short viable deletions (1-4) encompassing the *ade-1* locus were intercrossed and the ascospores plated on minimal medium to determine if there were any wild-type prototrophic recombinants. The results were as follows, where + means that wild-type recombinants were produced:

	1	2	3	4
1			+	
2				+
3	+			-1-
4		+	+	

The order of the deletions must be

- A. 3-2-1-4
- B. 2-4-1-3
- C. 1-3-4-2
- D. 4-1-3-2
- E. 3-1-2-4
- 8-9. Which of the following is not a general characteristic of an oncogene?
 - A. Ion channel
 - B. Growth factor
 - C. Transcription factor
 - D. Growth factor receptor
 - E. Signal transduction proteins
- 8-10. A quantitative trait is controlled by four genes, and each dominant allele of these genes contributes equally to the trait. If a tetrahybrid individual (heterozygous for all four genes) is self-fertilized, how many phenotypes can be distinguished among the progeny? (Assume no differences in environmental influences on the trait.)
 - A. 3
 - B. 4
 - C. 5
 - D. 9
 - E. 16