1．In Fig．1，m_{1} does not move relative to m_{3} ，and all the ropes are massless and taut．Determine the magnitude of the force \vec{F} exerted on the large block m_{3} ．Assume m_{2} does not contact m_{3} and ignore all friction．（ 10% ）

Fig． 1

2．As shown in Fig．2，a ball of mass m is connected by a wire of length L and swings in a vertical circle．At the lowest point （point a ），the ball has speed v_{0} ．（a）Find the tension force（ T ）at point a ，point b ，and point c（highest point）．（6\％）（b）What is the power (P) transferred by the gravity at point a ，point b and point c ？（4\％）

3．As shown in Fig．2，a solid cylinder of mass M and radius R unwinds without spinning on a vertical string．（a）Find the linear accerlation of the center of mass．（5\％）（b）What is the tension？（5\％）（c）To make the cylinder spin but not fall，what is the tension needed？（5\％）（Note：The moment of inertia about the center axis of cylinder，$I_{C M}$ ，is $0.5 \mathrm{MR}^{2}$ ）．

Fig． 3

4．A solid sphere of radius R has a density that varies as $\rho=\rho_{0}(1-r / R)$ ，where r is the distance from the center．Determine that variation of the field strength g with r within the sphere（ $r<\mathrm{R}$ ）．（ 10% ）

5．As shown in Fig．4，a thin ring of mass M and radius R can rotate freely about a pivot O on its rim in the vertical plane．At $t=0$ ，the ring is released from rest with an incline angle $\theta=\theta_{0}$ ．For small angular displacement，the ring will perform a simple harmonic oscillation．（a） Find the oscillation angular frequency ω ．（5\％）（b）Find $\theta(t)$ ．（5\％）

Fig． 4

5．When 17．7 J was added as heat to a non－monatomic ideal gas，the volume of the gas changed from $50.0 \mathrm{~cm}^{3}$ to $100 \mathrm{~cm}^{3}$ ，while the pressure remained at 1.00 atm ．（a）How much did the internal energy of the gas change？（6\％）If the quantity of gas was $2.00 \times 10^{-3} \mathrm{~mol}$ ，find（b） $\mathrm{C}_{\mathrm{p}}(3 \%)$ and（c） $\mathrm{C}_{\mathrm{v}}(3 \%)$ ．（d）What is the degree of freedom of the gas molecule？（ 3% ）（ $1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$ ） （ $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ ）．

7．In Fig．5，a conducting rod of radius R_{l} is coaxial with a larger conducting shell of radius R_{2} ．The length of the rod and the shell is L ．（ $L \gg R_{1}, R_{2}$ ，so you can treat it as infinitely long．）
（a）The net charge on the rod is $+Q$ ，and the net charge on the shell is $-2 Q$ ． The charges are uniformly distributed．Find the electric field at a radial distance r ，where $R_{l}<r<R_{2}$ ．（5\％）
（b）Find the capacitance of the conducting coaxial as shown in Fig．5．（5\％）

Fig． 5

8．A charge q with velocity \bar{v} is projected into a uniform magnetic field \bar{B} ．The velocity vector \vec{v} makes an angle θ with \bar{B} ．Derive（a）the period T ，（b）the radius r and（c）the pitch p of the helical path for the charge moving in the magnetic field．（ 10% ）

9．As shown in Fig．6，a square conducting loop is placed next to a very long current， $\mathrm{i}(\mathrm{t})=\mathrm{i}_{0} \sin \omega \mathrm{t}$ ．If the loop has resistance K ，find the induced current $I(t)$ in the loop．（ 10% ）

Fig． 6

