1．A block of mass m_{t} is put on top of a block of mass m_{b} ．To cause the top block to slip on the bottom one while the bottom one is held fixed， a horizontal force of magnitude at least F_{0} must be applied to the top block．The assembly of blocks is now placed on a horizontal， frictionless table（Fig．1）．Find the magnitudes of（a）the maximum horizontal force that can be applied to the lower block so that the

Fig． 1 blocks will move together，（5\％）and（b）the resulting acceleration of the blocks．（5\％）

2．In Fig．2，a small block of mass m can slide along the frictionless loop－the－loop，with loop radius R ．The block is released from rest at point P ，at height $h=5 R$ above the bottom of the loop．What are the magnitudes of（a）the horizontal component and（b）the vertical component of the net force acting on the block at point Q ？（5\％）（c） At what height h should the block be released from rest so that it is on the verge of losing contact with the track at the top of the loop？（5\％）

Fig． 2

3．In Fig．3，a dog of mass m stands on a flatboat of mass M at a distance D from the shore．He walks d relative to the boat，toward the shore，and then stops．Assuming no friction between the boat

Fig． 3 and the water，find how far the dog is then from the shore．（ 10% ）

4．（a）Prove that the rotational inertia of a rod of mass M and length L about an axis at one end and perpendicular to the rod is $M L^{2} / 3$ ．（ 5% ）
（b）Fig． 4 shows a rigid assembly of a thin hoop（of mass m and radius R ）and a thin radial rod（of length L and also of mass m ）．The assembly is initially upright，but we nudge it so that it rotates around a horizontal axis through the lower end of the rod．What is the assembly＇s angular speed about the rotation axis when it passes through the upside－down（inverted）orientation？（5\％）（The rotational inertia of a hoop of mass M and radius R about its own

Fig． 4 diameter is $M R^{2} / 2$ ）

5．One planet has a core of radius R and mass M surrounded by an outer shell of inner radius R ， outer radius $2 R$ ，and mass $4 M$ ．What is the gravitational acceleration $\overrightarrow{a_{g}}$ of a particle at points （a） $1.5 R$ and（5\％）（b） $3 R$ from the center of the planet？（5\％）

6．Prove that in a quasi－static adiabatic process，the ideal gas will follow the rule：$P V^{\prime \prime}=$ constant， where P is the pressure of the gas，V is the volume of the gas，and γ is the ratio of molar specific heat at constant pressure to molar specific heat at constant volume．$\left(\gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}\right)(10 \%)$

7．A long，nonconducting，solid cylinder of radius R has a nonuniform volume charge density ρ that is a function of radial distance r from the cylinder axis：$\rho=\mathrm{A} r^{2}$ ．Find the magnitude of the electric field at（a）$r<R(5 \%)$ and（b）$r>R(5 \%)$ ．

8．In Fig．5，current is set up through a truncated right circular cone of resistivity ρ ，left radius a ，right radius b ，and length L．Assume that the current density is uniform across any cross section taken perpendicular to the length．What is the resistance of the cone？（10\％）

Fig． 5

9．Find the magnitude of the magnetic field produced at the center of a rectangular conducting loop of length L and width W ，carrying a current i ．（10\％）

10．Fig． 6 shows a uniform magnetic field \vec{B} confined to a cylindrical volume of radius R ．The magnitude of \vec{B} is decreasing at a constant rate C_{B} ．In unit vector notation， what is the initial acceleration of an electron released at（a） point a（radial distance r ）（ 5% ）and（b）point b（center）？ （5\％）

