系所組別：地球科學系甲，乙組
考試科目：普通物理
※ 考生請注意：本試題不可使用計算機

1．In a circular motion，the tangential speed of the moving particle is $v(t)=3 t^{2}+2$ ，where the unit of v is m / s ，and the unit of t is s．（a）Using dimensional analysis，find the units of constants 3 and 2 in $v(t)(2 \%)$ ．（b）Find the magnitudes of the instantaneous tangential and centripetal acceleration at $t=0.1 \mathrm{~s}$（4\％）（c）Find the distance travelled by the particle from $t=0.1 \mathrm{~s}$ to $t=0.2 \mathrm{~s}$ ．（4\％）

2．In Fig．1，block A of maas m_{A} is on the front surface of cart B of mass m_{B} ．An external force \vec{F} acts on B ．What is the minimum coefficient of static friction betweem A and B for A not to slide down？（10\％）

3．In Fig．2，a projective of mass m strikes a stationary block of mass M from below with a velocity \vec{u} ．The projective embeds in the block．To what height does the block rise？（10\％）

4．As shown in Fig．3，a disk of mass M and radius R rolls down an incline with a inclining angle θ ．The coefficient of static friction between the cylinder and the incline is μ_{s} ．If the disk is rolling without slipping：（a）Find the linear acceleration of the center of mass of the disk．（6\％）（b）For pure rolling without slipping，find the minimum value of μ_{s} ．（4\％）（The rotational inertia of a disk about

Fig． 3 the axis through its center is $M R^{2} / 2$ ）

5．（a）What is＂conservative force＂？（4\％）（b）From the potential energy function $U(r)=C e^{-B r} / r$ ， find the conservatice force $\vec{F}(r)(6 \%)$ ．（ C and B are constants）

6．One planet has radius R and mass M ．Find the gravitational force from the planet on a particle of mass m at a distance（a） $0.5 R(5 \%)$ ，and（b） $2 R(5 \%)$ from the center of the planet．（c）If the particle is orbiting around the center of the planet with a radius $r=10 R$ ，find the orbiting speed of the particle．（5\％）（d）Find the escape speed of a particle at a distance $10 R$ from the center of the planet．（5\％）

系所組別：地球科學系甲，乙組
※ 考生請注意：本試題不可使用計算機

7．A infinitely large plane has uniform area charge density σ ．Find the electric field outside the plane．（10\％）

8．In Fig．4，a potential difference V is applied across a capacitor arrangement with capacitances C_{1}, C_{2} ，and C_{3} ．Find the stored charges and potential energies in capacitors C_{1}, C_{2} ，and $C_{3}(10 \%)$

Fig． 4
9．Fig． 5 shows a cross section of a long thin ribbon of width W that is carrying a uniformly distributed total current I into the page． Calculate the magnitude of the magnetic field at a point P in the plane of the ribbon at a distance d from its edge．（Hint：Think the ribbon as being constructed from many long，thin，parallel wires．）
 （10\％）

