
國立成功大學83 學年度地球科學考試(物理化學試題)第一頁

A 1-L cylinder contains 5 moles of H₂(g), what is the pressure inside the cylinder at 25 °C according to

 (a) the ideal gas law ? (5%)
 (b) the van der Waals equation ? (a=0.2476 L²bar mol²², b=0.02661 L mol²¹) (6%)

2. One mole of an ideal gas expands from 5 to 1 bar at

- 298 K. Calculate the work (w)
 (a) for a reversible expansion. (6%)
 (b) for an expansion against a constant pressure of 1 bar. (6%)
- 3. Calculate the enthalpy of formation of PCls(s), given the heats of the following reactions at 25 °C: (8%) 2 P(s) + 3 Clz(g) = 2 PCl3(l) $^{\Delta}_{r}H^{\circ}=-635.13$ kJ mol⁻¹ PCl3(l) + Clz(g) = PCls(s) $^{\Delta}_{r}H^{\circ}=-137.28$ kJ mol⁻¹
- 4. What is the entropy of mixing of 0.5 mol of $0_2(g)$ with 0.5 mol of $N_2(g)$ at 25°C. (8%)
- 5! One mole of an ideal gas at 27°C expands isothermally and reversibly from 10 to 1 bar. Calculate 4U, 4H, 4S, and 4G. (12%)
- 6. Given at 1393 K Fe203(s) + 3 CO(g) = 2 Fe(s) + 3 CO₂(g) K_1 =0.0467 2 CO₂(g) = 2 CO(g) + O₂(g) K_2 =1.4x10⁻¹² What is the equilibrium pressure of O₂(g) in a vessel containing Fe₂O₃(s) and Fe(s) at equilibrium at 1393 K? (The standard state pressure is 1 bar.) (8%)
- 7. Calculate the equilibrium pressure for the conversion of graphite (d=2.25 g cm⁻³) to diamond (d=3.51 g cm⁻³) at 25 °C. ($^{\circ}$ C=2900 J mol⁻¹, ($^{\circ}$ C/ $^{\circ}$ P) $_{\tau}$ = $^{\circ}$ V) (8%)
- 8. Given the temperature-composition diagram for the Zn-Mg system. Describe what happens when the solution at point J is cooled down to 200 °C as indicated by the vertical line. (12%)

(a) Write the atomic orbital (AO) 1/1: for hydrogen atom; (b) draw the curve #1: vs. the coordinate r(the distance of electron to nucleus);

- (c) write the molecular orbital for linear combination of AO(LCAO-MO) y(σ₈₁₂) for H₂+ ion;
 (d) draw the curve y(σ₈₁₂) vs. the coordinate R (the internuclear distance);
 (a) write the probability density for W₁₂ (15%) (e) write the probability density for 1/2: (15%)
- 10. For the AO \$\mu_2_{P_0}\$ of hydrogen atom (a) what are its quantum numbers ?

(b) draw the picture to show its electron distribution.