國立成功大學 頁 地球科學研究 物理化學 試題 碩士班招生考試 第 頁

說明: 1. 答案一律寫在 卷上,計算題必須寫出計算過程,否則不予計分。

- 2. 請依序作答,並標明題號。
- 3. $R = 8.314 \text{ J K}^{-1} \text{mol}^{-1} = 8.206 \text{ x } 10^{-2} \text{ atm L K}^{-1} \text{mol}^{-1}$, $h = 6.626 \text{x} 10^{-34} \text{ J s}$ $e = 1.602 \times 10^{-19} \text{ C}, m_e = 9.11 \times 10^{-31} \text{ kg}, N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$
- 1. Please describe or give a definition for the following terms. (30%)

(1) Boyle's law

(2) Dalton's law

(3) Bohr radius

(4) nodal plane

(5) Carnot cycle

(6) phase diagram and triple point (7) Schrödinger equation (8) work function (9) zero-point energy (10) standard enthalpy of formation

- 2. The mass percentage composition of dry air at sea level is approximately N_2 : 75.5; O_2 : 23.2; Ar: 1.3. What is the partial pressure of each component when the total pressure is 1.00 atm? (atomic weight: N=14.01, O=16.00, Ar=39.95) (10%)
- 3. A certain first-order reaction has a half-life of 1.00 hours. (10%)
 - (1) Calculate the rate constant for this reaction.
 - (2) How much time is required for this reaction to be 75% complete?
- 4. Use molecular orbital theory to describe the bonding (electron configuration), magnetism, and relative bond energies of the (1) O_2 , (2) O_2 , and (3) O_2^2 species. (10%)
- 5. (1) Calculate the de Broglie wavelength of an electron that has been accelerated by a potential of 1 MV. (5%)
 - (2) The speed of a projectile of mass 1.0 kg is known to within 1 x 10^{-6} m s⁻¹. Calculate the minimum uncertainty in its position. (5%)
- 6. At 298K, the equilibrium constant, K_p , for the reaction $N_2O_4(g) = 2NO_2(g)$ is 0.142. What is ΔG° for the reaction? (10%)
- 7. Calculate the equilibrium constant at 25°C for the reaction $AgCl(s) \neq Ag^{\dagger}(aq) + Cl^{\dagger}(aq) K=[Ag^{\dagger}][Cl^{\dagger}]. \quad (10\%)$ [AgCl(s) + $e^- \rightarrow Ag(s) + Cl^-(aq)$ $E^0=+0.22 \text{ V};$ $Ag^{+}(aq) + e^{-} \rightarrow Ag(s) \quad E^{0}=+0.80 \ V$
- 8. Name the point groups of the following molecules to which they belong: (1) NO_2 (2) N_2O (c) $CHCl_3$ (4) $CH_2=CH_2$, and (5) trans-CHBr=CHBr. (10%)