共

第

說明:1.請依序作答並標明題號

- 2.計算題必須寫出計算過程,只寫答案不予計分
- $3.R=8.314 \text{ J mol}^{-1}\text{K}^{-1}=1.987 \text{ cal mol}^{-1}\text{K}^{-1}$
- 1. Why is the rate of a reaction affected by each of the following? (15%)
 - a. frequency of collisions
 - b. kinetic energy of collisions
 - c. orientation of collisions
- 2. The rate constant for the decomposition of a certain substance is $2.8 \times 10^{-3} \text{ Lmol}^{-1} \text{s}^{-1}$ at 30°C and $1.38 \times 10^{-2} \text{ Lmol}^{-1} \text{s}^{-1}$ at 50°C. Evaluate the Arrhenius parameters of the reaction. (15%)
- 3. In the reaction 2NO $_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$, when the NO concentration alone was doubled, the rate increased by a factor of 4; when both the NO and O2 concentrations were increased by a factor of 2, the rate increased by a factor of 8. What is the rate law for the reaction? (10%)
- 4. a. Please write a time-independent one-dimension Schrödinger equation. (5%)
 - b. Please describe the commutator of the two operators in quantum mechanics. (5%)
 - c. What is the correspondence principle in quantum mechanics? (5%)
 - d. Give the possible term symbols for Li[He]2s¹. (5%)
 - e. What atomic terms are possible for the electron configuration ns¹nd¹? Which term is likely to lie lowest in energy? (10%)
 - f. Give the ground-state electron configurations of (a) CO and (b) CN (10%)
- 5. An ideal gas absorbs 9410 J of heat when it is expanded isothermally (at 25°C) and reversible from 1.5 dm³ to 10 dm³. How many moles of the gas are present? (10%)
- 6. If the ionization constant of a molecule could be described by the equation $\ln K = 7 \frac{1850}{T} 0.002T$ between 5°C and 55°C. Calculate ΔG° for the ionization at 50°C. (10%)