1. The following data is listed as

х	1	2	3	4
у	3	5	6	2

Questions:

- (a) Set up the polynomial such that $y(x_i) = y_i$. (11%)
- (b) Further, what are the values of a and b in y = ax + b to least square approximate the data listed in the table (8%)
- 2. A surface is defined by $z = x^2 + y^2$. Calculate the surface area defined on the domain $0 \le x^2 + y^2 \le b^2$. (20%)
- 3. The differentiation equation is given as $y'' + 3y + 2y = e^t$. Questions:
 - (a) What is the homogeneous solution? (5%)
 - (b) What is the particular solution? (5%)
 - (c) If the initial conditions are y(0) = 1 and y'(0) = 1, then what is the complete solution? (8%)
- 4. Solve the system of equations

$$8x_1 - 4x_2 + 3x_3 = 0$$

$$x_1 + 5x_2 - x_3 = -5$$

$$-2x_1 + 6x_2 + x_3 = -4$$
 (20%)

嚴禁利用電子計算机

5. Suppose $U_1(x, y)$ to be the solution of the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad , \quad 0 \le x, y \le a \, ,$$

with the boundary conditions

$$u(x,0) = g(x)$$
, $u(x,a) = 0$, $u(0,y) = 0$, $u(a,y) = 0$.

Questions:

(a) What is the solution $U_2(x, y)$ in terms of $U_1(x, y)$ for these boundary conditions

$$u(x,0) = 0$$
, $u(x,a) = g(x)$, $u(0,y) = 0$, $u(a,y) = 0$? (8%)

(b) What is the solution $U_3(x,y)$ in terms of $U_1(x,y)$ for these boundary conditions

$$u(x,0) = 0$$
, $u(x,a) = 0$, $u(0,y) = g(y)$, $u(a,y) = 0$? (5%)

(c) What is the solution $U_4(x, y)$ in terms of $U_1(x, y)$ for these boundary conditions

$$u(x,0) = 0$$
, $u(x,a) = 0$, $u(0,y) = 0$, $u(a,y) = g(y)$? (5%)

(d) What is the solution $U_5(x,y)$ in terms of $U_1(x,y)$ for these boundary conditions

$$u(x,0) = g(x), u(x,a) = 3g(x), u(0,y) = 2g(y), u(a,y) = 4g(y)? (5\%)$$