編號: 678 系所:地球科學系乙組

科目:物理化學

說明:1. 請依序作答並標明題號

- 2. 計算題必須寫出計算過程,只寫答案不給分
- 3. $R = 8.314 \text{ J mol}^{-1} \text{ k}^{-1} = 1.987 \text{ cal mol}^{-1} \text{ k}^{-1}$
- 1. Since $C_v = (\partial E/\partial T)_v$ by definition, one often writes, without any restrictions understood, " $dE = C_v dT$ ". It is not generally true, however, that $dE = C_v dT$; $dE = C_v dT$ only under special circumstances. What are the circumstances? (15%)
- 2. A student made the following erroneous statement in a laboratory report on bomb calorimetry: " $\Delta H = \Delta E + P\Delta V$. Since the bomb calorimetry process is a constant volume one, $\Delta V = 0$, and $\Delta E = \Delta H$ " Explain why this argument is incorrect. (15%)
- 3. Calculate ΔS for the isobaric heating of 1 mole of N_2 from 300 °K to 1000 °K $C_p = 6.4492 + 1.4125 \times 10^{-3} T 0.807 \times 10^{-7} T^2$ (14%)
- 4. Write a mathematical expression for the entropy change taking place in the working substance : (28%)
 - (a) Free expansion of 1 mole of an ideal gas from V_1 to V_2
 - (b) Reversible, isothermal phase transition
 - (c) Reversible, adiabatic expansion of 1 mole of an ideal gas from V_1 to V_2
 - (d) Reversible, isothermal expansion of 1 mole of an ideal gas from V_1 to V_2
- 5. The hypothetical reaction $A \rightarrow B$ is of the -1 order, that is, $-dc/dt = kc^{-1}$, where c = [A] (28%)
 - (a) Obtain an equation for c as a function of t, k, and the initial concentration c_0
 - (b) Find the time required for the concentration to fall to 10 percent of its initial value, in terms of k and c_o .
 - (c) Does this reaction ever reach completion? Explain that process.