編號：

※ 考生請注意：本試題 \square 可 ∇ 不可 使用計算機

1．（25\％）A particle of mass m moving in one dimension has potential energy $U(x)=U_{0}\left[2(x / a)^{2}-(x / a)^{4}\right]$ ，where U_{0} and a are positive constants．
（a）Find the force $F(x)$ ，which acts on the particle．（3\％）
（b）Sketch $U(x)$ ．Find the position of stable and unstable equilibrium．（4 \％）
（c）What is the angular frequency ω of oscillations about the point of stable equilibrium？ （5\％）
（d）What is the minimum speed the particle must have at the origin to escape to infinity？ （5\％）
（e）At $t=0$ the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part（d）．Find $x(t) .(8 \%)$

2．（ 15% ）An undamped driven harmonic oscillator satisfies the equation of motion $m\left(d^{2} x / d t^{2}+\omega_{0}^{2} x\right)=F(t)$ ．The driving force $F(t)=F_{0} \sin (\omega t)$ is switched on at $t=0$ ．
（a）Find $x(t)$ for the initial conditions $x=0$ and $v=0$ at $t=0$ ．（10 \％）
（b）Find $x(t)$ for $\omega=\omega_{0}$ by taking the limit $\omega \rightarrow \omega_{0}$ in your result in part（a）．（5 \％）
3．(20%) A particle of mass m is attracted to a force center with the force with magnitude k / r^{2} ．Use plane polar coordinates and find the Hamiltonian＇s equations of motion．

4．（ 15% ）Find the horizontal deflection from the plumb line caused by the Coriolis force acting on a particle falling freely in Earth＇s gravitational field from a height h above Earth＇s surface．

5．（25\％）A string is pulled aside a distance h at a point $3 L / 7$ from one end．At a point $3 L / 7$ from the other end，the string is pulled aside a distance h in the opposite direction．
Discuss the vibrations in terms of normal modes．

