系所組別：物理學系

考試科目：電磁學

※ 考生請注意：本試題 ワ可 \square 不可 使用計算機

Part I：選揞题（每題五分）

1．Assuming that the electric field intensity $\overrightarrow{\boldsymbol{E}}=10 x \hat{\boldsymbol{i}}+10 y \hat{j}+10 \hat{\boldsymbol{k}}(\mathrm{~V} / \mathrm{m})$ ，find the total electric charge contained inside a cubical volume of 20 cm on a side centered symmetrically at the origin．
（a） 20 C
（b） 0.16 C
（c） $1.42 \times 10^{-12} \mathrm{C}$
（d） $1.77 \times 10^{-10} \mathrm{C}$
（e） $8.86 \times 10^{-11} \mathrm{C}$

2．A very long，fixed straight wire with a time－dependent current I points to $+y$ direction．The current i varies with time as $I(t)=3 t^{2}+2$ Amp．A square loop with side W located at the right hand side of the straight wire，as shown below．If the square loop has the side $W=1 \mathrm{~m}$ and a total resistance $R=1.2 \Omega$ ，What is the induced current on the loop at $t=1 \mathrm{sec}$ ？
（a） $6.9 \times 10^{-7} \mathrm{~A}$ counterclockwise（b） $8.3 \times 10^{-7} \mathrm{~A}$ counterclockwise（c） $2 \times 10^{-7} \mathrm{~A}$ counterclockwise （d） $6.9 \times 10^{-7} \mathrm{~A}$ clockwise（e） $8.3 \times 10^{-7} \mathrm{~A}$ clockwise（f） $2 \times 10^{-7} \mathrm{~A}$ clockwise

3．Same as the previous case．What is the magnetic dipole moment $\overrightarrow{\boldsymbol{m}}$ of the loop（magnitude and direction）in units of Amp－ m^{2} at $t=2 \mathrm{sec}$ ？
（a） $6.9 \times 10^{-7}+\hat{z}$（b）
（b） $1.4 \times 10^{-6}+\hat{z}(c) 2 \times 10^{-6}+\hat{z}$
（d） $6.9 \times 10^{-7}-\hat{z}$（e） $1.4 \times 10^{-6}-\hat{z}$

4．The x－polarized uniform plane wave with frequency 150 MHz propagates in air along the z－ direction and impinges on a perfectly conducting plane at $z=0$ ．Assuming the amplitude of the $\overrightarrow{\boldsymbol{E}}$ field for the incident wave is $12(\mathrm{mV} / \mathrm{m})$ ，what is the expression for the reflected $\overrightarrow{\boldsymbol{H}}(t, z)$ field in A / m ？（a）$\left(10^{-4} / \pi\right) \cos \left(1.5 \times 10^{7} t-\pi z\right) \hat{y}(\mathbf{b})\left(10^{-4} / \pi\right) \cos \left(1.5 \times 10^{7} t+\pi z\right) \hat{y}$
（c）$\left(10^{-4} / \pi\right) \cos \left(3 \pi \times 10^{8} t+2 \pi z\right) \hat{y}(\mathrm{~d})\left(10^{-4} / \pi\right) \cos \left(3 \pi \times 10^{8} t-\pi z\right) \hat{y}(\mathbf{e})\left(10^{-4} / \pi\right) \cos \left(3 \pi \times 10^{8} t+\pi z\right) \hat{y}$

系所組別：物理學系

※ 考生請注意：本試題 \square 可 \square 不可 使用計算機

5．For the following two－dipole systems，which configuration has the lowest electrostatic energy？
In each case，two identical electric dipoles separate with the same distance R from each center point with $R \gg d$ ，where d is the length of the electric dipole．
$(a) \rightarrow \leftarrow$
$(b) \rightarrow \rightarrow$
$(c) \uparrow \uparrow$
（d）$\uparrow \downarrow$
（e）$\rightarrow \uparrow$

6．A time－dependent voltage source $V(t)=\pi t^{3}+2$ Volt is connected across a parallel－plate capacitor with separation $d=3 \mathrm{~mm}$ and surface area $S=1 \mathrm{~m}^{2}$ ．What is the value of the displacement current between the plates at $t=6 \mathrm{sec}$ ？（a） $10^{-4} \mathrm{~A}$（b） $10^{-5} \mathrm{~A}$（c） $10^{-6} \mathrm{~A}$（d） $10^{-7} \mathrm{~A}$（e） $10^{-8} \mathrm{~A}$ ．

7．A triangular prism shown below has a relative dielectric constant $\varepsilon_{r}=4$ and $\mu_{r}=1$ ．What is the critical angle θ_{c} for the incident light from the prism to air？
（a） 30°
（b） 37°
（c） 45°
（d） 53°
（e） 60°

8．Same as the previous case．What is the percentage of the incident light power reflected back by the prism？The transmission coefficient for a normal incident light is $\tau=2 \eta_{2} /\left(\eta_{2}+\eta_{1}\right)$ ．
（a） 0.25
（b） 0.50 （c） 0.67
（d） 0.79
（e） 0.89

9．In an air－filled rectangular cavity resonator has dimensions $a=b=1.5 \mathrm{~cm}$ and $d=3 \mathrm{~cm}$ ．The z－component H－field for the TE modes in a Cartesian coordinate is
$H_{z}(x, y, z)=H_{o} \cos \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) \sin \left(\frac{p \pi}{d} z\right)$ ，where m, n ，and p are integrals．The resonant frequency is given as $f_{m n p}=\frac{1}{2 \sqrt{\mu \varepsilon}} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}+\left(\frac{p}{d}\right)^{2}}$ ．What is the lowest resonant frequency of the TE modes？（a） 5 GHz （b） 10 GHz （c） $5 \sqrt{5} \mathrm{GHz}$（d） $10 \sqrt{2} \mathrm{GH}$（e） 15 GHz

10．Assuming that the total radiated power from an oscillating electric dipole system is 0.1 W ．What is the new radiated power when the oscillating angular frequency of the dipole increases from
ω to 2ω ？（a） 0.2 W
（b） 0.4 W
（c） 0.8 W
（d） 1.6 W
（e） 3.2 W
※ 考生請注意：本試題 \square 可 \square 不可 使用計算機

Part II：計算題

11．（15 Points）A total positive charge Q is uniformly distributed on a ring of radius R ．（a）Calculate the electric potential along the z－axis as a function of z ，and the maximum electric potential of this charged ring．（b）Compute the z－component electric field E_{z} as a function of z ．（c）What is the value of the maximum E_{z} of this charged ring？（d）An electron with charge e and mass m is released from the point $z \ll R$ along the axis of the ring．The motion of the electron can be described as a simple harmonic motion（SHM）．Derive the equation of motion for this SHM．（e）What is the angular frequency ω for this SHM？Express your answers in terms of ε_{0}, Q, e, m ，and R ．

12．（10 Points）Assuming that the space between the inner and outer conductors of a long coaxial cylindrical structure is filled with an electron cloud having a volume density charge $\rho(r)=A / r$ for $a<r<2 a$ ，where a and $2 a$ are the radii of the inner and outer conductors respectively．The inner conductor is maintained at a constant potential V_{o} while the outer conductor is grounded．Determine the potential distribution in the region $a<r<2 a$ by solving the Poisson＇s equation with numerical values of $a=2 \mathrm{~m}, A=\varepsilon_{0} \ln 2 \mathrm{C} / \mathrm{m}^{2}$ ，and $V_{o}=\ln 2$ Volt．$\left(\varepsilon_{0}=1 /\left(36 \pi \times 10^{9}\right) \mathrm{F} / \mathrm{m}\right)$

In cylindrical coordinates，

$$
\nabla^{2}(r, \phi, z)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial \phi^{2}}+\frac{\partial}{\partial z^{2}}
$$

系所組別：物理學系
考試科目：電磁學

※ 考生請注意：本試題 ∇ 可 \square 不可 使用計算機

13．（10 Points）The capacitors shown in the accompanying figure are all uncharged when 24 V is applied between points A and B with the switch open．（a）Find the potential difference between points D and $\mathrm{E}, V_{\mathrm{D}}-V_{\mathrm{E}}$ while the switch S remains opened．（b）If the switch S is closed at $t=0$ ， what is the final electric potential energy stored in C_{1} as $t \rightarrow \infty$ ？

14．（15 Points）Two identical coaxial coils，each of N turns and radius a ，are separated by a distance d ，as shown below．A current I flows in each coil in the same direction．（a）Express the magnitude of the magnetic field B_{z} at the z axis between the coils．（b）Show that $d B_{z} / d z$ vanishes at the midpoint $z=d / 2$ ．（c）Find the relation between a and d such that $d^{2} B_{z} / d z^{2}$ also vanishes at the midpoint．Hint：For a single coil of radius a ，with a current $I, B_{z}(z)=\frac{\mu_{o} I}{2} \frac{a^{2}}{\left(a^{2}+z^{2}\right)^{3 / 2}}$ ．

＊Useful values：

$\varepsilon_{0}=1 /\left(36 \pi \times 10^{9}\right) \mathrm{F} / \mathrm{m} ; \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$

