（20 points for each problem）
1．（a）As in fig． 1 ，an object is shot up at an initial velocity $v_{0}=\sqrt{G M / R}$ at an angle 60° relative to the vertical line，where M is the Earth＇s mass．What is the largest distance r of the object to the Earth＇s center？（b）We want to dispose of nuclear waste by crashing it into the Sun（mass M ）．Given the radius of Earth＇s orbit r_{E} and Sun＇s radius R_{s} ，the most efficient way is to shoot the waste m at a velocity Δv relative to the Earth in backward direction so that the circular orbit of the waste is turned into an elliptical orbit with R_{s} as its perihelion distance．What is the Δv required？（ $10+10$ points）
2．A circular ring is suspended in a horizontal plane by three strings，each of length ℓ ，which are attached symmetrically to the ring and are connected to fixed points lying in a plane above the ring．At equilibrium， each string is vertical．Write down the eq．of motion for small angle θ to show that the angular frequency of small rotational oscillations about the vertical through the center of the ring is $\omega=\sqrt{g / \ell}$ ．
3．（a）By computing $d L\left(q_{i}(t), \dot{q}_{i}(t), t\right) / d t$ ，show that the Hamiltonian H is conserved if the Lagrangian L has no explicit time dependence．（b）A simple pendulum consists of a mass m attached to a string of length ℓ ． After the pendulum is set into motion，ℓ is shortened at a constant rate，ie．$\ell(t)=\ell_{0}-\alpha t$ with $\alpha=$ const ．
The suspension point remains fixed．$L=$ ？$H=$ ？Is H conserved？（ $10+10$ points）
4．An object rotates about a fixed point at instantaneous angular velocity $\vec{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ ．Show that the kinetic energy T and angular momentum \vec{L} are related to $\vec{\omega}$ by $T=\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} I_{i j} \omega_{i} \omega_{j}$ and $L_{i}=\sum_{j=1}^{3} I_{i j} \omega_{j}$ ， where $I_{i j} \equiv \sum_{\substack{\alpha \\(m a s s c e l l)}} m_{\alpha}\left(\delta_{i j} r_{\alpha}^{2}-x_{\alpha i} x_{\alpha j}\right), r_{\alpha}^{2} \equiv \sum_{k=1}^{3} x_{\alpha k}^{2}$ for the α－th mass cell．
（You might need these 2 formulas：$(\vec{A} \times \vec{B})^{2}=A^{2} B^{2}-(\vec{A} \cdot \vec{B})^{2}, \vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})$ ．）
5．The solution of the wave eq．for a string of linear density ρ ，tension τ ，length L and fixed at both ends are given by $q(x, t)=\sum_{n=1}^{\infty} \sin (n \pi x / L)\left[\alpha_{n} \cos (n \omega t)-\beta_{n} \sin (n \omega t)\right]$ ，where $\omega=\frac{\pi}{L} \sqrt{\frac{\tau}{\rho}}$ is the fundamental angular frequency．As in fig． 5 ，the center of the string is displaced a distance h and then released at $t=0$ from rest．Find $q(x, t)$ for all time．（You might need： $\int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x)$ ．）

