編號： 39

系所組別：物理學系

考試科目：物理數學 考試日期：0223，筂次：1
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．Prove the following equalities．（ 20 points）
（a）$\nabla \cdot(\vec{a} \times \vec{b})=\vec{b} \cdot(\nabla \times \vec{a})-\vec{a} \cdot(\nabla \times \vec{b})$
（b）$\nabla \times(\nabla \times \vec{a})=\nabla \nabla \cdot \vec{a}-\nabla \cdot \nabla \vec{a}$

2．Solve the following equations for $y(x)$ ．（20 points）
（a）$(1+y) d x+(1-x) d y=0$
（b）$x \frac{d y}{d x}=2 x+3 y$

3．Consider the matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$ ．（20 points）
（a）Find the eigenvalues．
（b）Find the corresponding orthonormal eigenvectors．
（c）Compare the sum of the eigenvalues and the sum of the diagonal elements．

4．（15 points）
（a）Expand $\ln (1+x)$ as an infinite series for $-1<x \leq 1$ ．
（b）Given the Riemann zeta function $\zeta(2)=\sum_{n=1}^{\infty} n^{-2}=\frac{\pi^{2}}{6}$ ，calculate $\int_{0}^{1} \frac{\ln (1+x)}{x} d x$ ．

5．Consider the periodic function $f(x)=\left\{\begin{array}{cc}x, & 0<x<\pi \\ -x, & -\pi<x<0\end{array}\right.$（15 points）
（a）Represent $f(x)$ by a Fourier series．
（b）Use the result of（a）to calculate $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$ ．

6．Use the generating function $e^{(x / 2)(t-1 / t)}=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n}$ to show that Bessel function $J_{n}(x)$ has odd or even parity according to whether n is odd or even，namely，$J_{n}(x)=(-1)^{n} J_{n}(-x) \quad$（10 points）

