※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．（a）Write down the Lorentz transformation matrix for the boost in the x－direction．（ 10% ）
（b）If E is the energy of a relativistic particle，how large is its de Broglie wavelength？（ 10% ）

2．Consider a particle with energy E is incident from the left－side．The particle is influenced by the following potential：$V(x)=V_{0}[\delta(x)+\delta(x-a)]$ ．
（a）Write down the wave－functions with undetermined coefficients in different regions（ $x<0,0<x<a, x>a$ ）． （10\％）
（b）Find out the transmission coefficient．（ 10% ）

3．（a）Calculate the Expectation values for kinetic energy K and potential energy V in the ground state of the hydrogen energy．（10\％）
（b）Calculate $\left\langle z^{2}\right\rangle$ for an electron in the ground state of hydrogen．（ 10% ）

4．Consider a particle in a potential $V(x)=\left\{\begin{array}{lll}\frac{1}{2} k x^{2}, & \text { for } & x<0 \\ \infty, & \text { for } & x>0\end{array}\right.$
（a）What is the energy of the first－excited state？（5\％）
（b）What is the expectation value $\left\langle x^{2}\right\rangle$ for the first－excited state？（ 10% ）

5．Imagine two non－interacting particles，each of mass m ，in the infinite square well with width a ．If one is in the ground state ψ_{1} and the other is in the first excited state ψ_{2} ，calculate $\left\langle x_{1} x_{2}\right\rangle$ assuming they are identical fermions．（ 10% ）

6．（a）Write down the spin angular momentum operators（ $\mathrm{S}_{\mathrm{x}}, \mathrm{S}_{\mathrm{y}}$ ，and S_{z} ）of a spin－ $1 / 2$ particle．（5\％）
（b）Suppose a spin－ $1 / 2$ particle is in the state $\frac{1}{\sqrt{6}}\binom{1-i}{2}$ ．What are the probabilities of getting $-\hbar / 2$ if you measure S_{x} ？(10%)

