第｜頁，共｜頁
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．We have a matrix $\mathrm{M}=\left|\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 2 & 3 & 1 \\ 3 & 0 & 0 & 2 \\ 1 & 3 & 2 & 1\end{array}\right|$ ．（a）Calculate the determinant of M ．（b）If $\left\{\lambda_{i}, i=1,2,3,4\right\}$ are the eigenvalues of M ，calculate $\sum_{i=1}^{4} \lambda_{i}$ and $\sum_{i=1}^{4} \lambda_{i}^{2} . \quad(4+3+3)$
2．Calculate $\oint_{C}\left(x^{2}+y z^{2}\right) d x+\left(2 x-y^{3}\right) d y$ ，where C is a circle $(x-2)^{2}+(y-3)^{2}=9$ on the $\mathrm{z}=0$ plane．（10）
3．（a）Show by the Wronskian method that the functions $\left\{x^{n} / n!, n=0,1, \cdots, \infty\right\}$ are linearly independent．
（b）Construct from $\left\{x^{n}\right\}$ the first three Laguerre polynomials $L_{0}=1, L_{1}=1-x, L_{2}=\left(2-4 x+x^{2}\right) / 2$ in $0 \leq x<\infty$ by the Gram－Schmidt orthogonalization procedure with the weight function $w(x)=\exp (-x)$ and normalization $\left\langle L_{m} \mid L_{n}\right\rangle=\delta_{m n}$ ．
4．A particle of unit mass $(m=1)$ is initially at $x(0)=A$ with velocity $\dot{x}(0)=0$ ．
（a）$d^{2} x / d t^{2}+\gamma d x / d t+k x=0$ ，find $x(t)$ for all time $t>0$ for $k>\gamma^{2}, k=\gamma^{2} \& k<\gamma^{2}$ respectively．
（b）$d^{2} x / d t^{2}+\gamma d x / d t+k x=F \cos (\omega t)$ ，where F is an external driving force．Assume you have obtained the steady state solution $B \cos (\omega t+\phi)$ ，ie．$B=B(F, \gamma, k) \& \phi=\phi(\gamma, k)$ are already known，find $x(t)$ for all time $t>0$ for $k>\gamma^{2}$ ． （9＋6）
5．（a）Find the poles \＆residues of $\frac{1}{1+z^{n}}$ ．
（b）Derive $\int_{0}^{\infty} \cos \left(t^{2}\right) d t=\int_{0}^{\infty} \sin \left(t^{2}\right) d t=\frac{\sqrt{\pi}}{2 \sqrt{2}}$ 。（Hint：Take the contour in the fig．5．Note that $f(z)=\exp \left(i z^{2}\right)$ has no singularity in the finite complex plane．）（ $\left.10+10\right)$
6．Bessel functions obey the recurrence relation $J_{n+1}(x)=-J_{n}^{\prime}(x)+\frac{n}{x} J_{n}(x)$ ．Show by mathematical induction（數學歸納法＂if correct for n ，then also correct for $n+1$＂）that $J_{n}(x)$ $=(-1)^{n} x^{n}\left(\frac{1}{x} \frac{d}{d x}\right)^{n} J_{0}(x)$ for any integer n ．（Hint：Calculate $J_{n}^{\prime}(x)$ ，the derivative of $J_{n}(x)$ ．）
7．Show that the inverse Fourier transform of $G(\vec{k})=\frac{1}{(2 \pi)^{3 / 2} k^{2}}$ is $g(\vec{r}) \equiv \frac{1}{(2 \pi)^{3 / 2}} \int G(k) e^{i \vec{k} \cdot \vec{r}} d^{3} \vec{k}=\frac{1}{4 \pi r}$ ， where $k \equiv|\vec{k}|$ \＆$r \equiv|\vec{r}|$ ．（Hint： $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$ ．）
（5）

