编號:

系所組別:物理學系

41

考試科目:物理數學

第₁頁,共 | 頁

考試日期:0212,節次:1

請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 ※ 考生請注意:本試題不可使用計算機。 1. We have a matrix $M = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 2 & 3 & 1 \\ 3 & 0 & 0 & 2 \\ 1 & 3 & 2 & 1 \end{bmatrix}$. (a) Calculate the determinant of M. (b) If $\{\lambda_i, i = 1, 2, 3, 4\}$ are the eigenvalues of M, calculate $\sum_{i=1}^{4} \lambda_i$ and $\sum_{i=1}^{4} \lambda_i^2$. (4+3+3) 2. Calculate $\oint_C (x^2 + yz^2) dx + (2x - y^3) dy$, where C is a circle $(x - 2)^2 + (y - 3)^2 = 9$ on the z = 0plane. (10) 3. (a) Show by the Wronskian method that the functions $\{x^n/n!, n = 0, 1, \dots, \infty\}$ are linearly independent. (b) Construct from $\{x^n\}$ the first three Laguerre polynomials $L_0 = 1$, $L_1 = 1 - x$, $L_2 = (2 - 4x + x^2)/2$ in $0 \le x < \infty$ by the Gram-Schmidt orthogonalization procedure with the weight function w(x) = exp(-x) and normalization $\langle L_m | L_n \rangle = \delta_{mn}$. (5+10)4. A particle of unit mass (m = 1) is initially at x(0) = A with velocity $\dot{x}(0) = 0$. (a) $d^2x/dt^2 + \gamma dx/dt + kx = 0$, find x(t) for all time t > 0 for $k > \gamma^2$, $k = \gamma^2 \& k < \gamma^2$ respectively. (b) $d^2x/dt^2 + \gamma dx/dt + kx = F \cos(\omega t)$, where F is an external driving force. Assume you have obtained the steady state solution $B\cos(\omega t + \phi)$, i.e. $B = B(F, \gamma, k) \& \phi = \phi(\gamma, k)$ are already known, find x(t) for all time t > 0 for $k > \gamma^2$. (9+6) 5. (a) Find the poles & residues of $\frac{1}{1+r^n}$. (b) Derive $\int_0^\infty \cos(t^2) dt = \int_0^\infty \sin(t^2) dt = \frac{\sqrt{\pi}}{2\sqrt{2}}$ (Hint: Take the contour in the fig. 5. Note that $f(z) = \exp(iz^2)$ has no singularity in the finite complex plane.) (10+10) 6. Bessel functions obey the recurrence relation $J_{n+1}(x) = -J'_n(x) + \frac{n}{2}J_n(x)$. Show by mathematical induction (數學歸納法" if correct for *n*, then also correct for n+1") that $J_n(x)$ $=(-1)^n x^n \left(\frac{1}{x} \frac{d}{dx}\right)^n J_0(x)$ for any integer *n*. (Hint: Calculate $J'_n(x)$, the derivative of $J_n(x)$.) (15)7. Show that the inverse Fourier transform of $G(\vec{k}) = \frac{1}{(2\pi)^{3/2}k^2}$ is $g(\vec{r}) = \frac{1}{(2\pi)^{3/2}} \int G(k)e^{i\vec{k}\cdot\vec{r}}d^3\vec{k} = \frac{1}{4\pi r}$ where $k \equiv \left| \vec{k} \right| \& r \equiv \left| \vec{r} \right|$. (Hint: $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$.) (15) (5)

 $\pi/4$