第1頁，共4頁

※ 考生請注意：本試題不可使用計算機。請於答案卷上並依題號順序作答，違反者，不予計分。

單選題：100 分，每題 5 分，答錯倒扣 1 分，整題不答不給分亦不扣分

－Some information you might use：
$\sin \left(15^{\circ}\right) \sim 0.259 ; \sin \left(45^{\circ}\right) \sim 0.707 ; \sin \left(60^{\circ}\right) \sim 0.866 ;$
$\tan \left(15^{\circ}\right) \sim 0.268 ; \tan \left(30^{\circ}\right) \sim 0.575 ; \tan \left(60^{\circ}\right) \sim 1.732$

1．The Figure shows a safe（mass $M=400 \mathrm{~kg}$ ）hanging by a rope （negligible mass）from a boom（ $a=2.0 \mathrm{~m}$ and $\mathrm{b}=32 / 11 \mathrm{~m}$ ） That consists of a uniform hinged beam（ $\mathrm{m}=80 \mathrm{~kg} \mathrm{)} \mathrm{and}$ horizontal cable（negligible mass）．What is the magnitude of the net force on the beam from the hinge（ g is gravitational acceleration）？

2．The figure shows that a block of mass $m=3.0 \mathrm{~kg}$ slides along the floor while a force \vec{F} of magnitude 12.0 N is applied to it at an upward angle θ ．The coefficient of kinetic friction between the block and floor is $\mu_{\mathrm{k}}=0.4$ ．We can vary θ from 0 to 90°（the block remains on the floor）．What θ gives the maximum value of the block＇s acceleration magnitude a？

（A） 12^{0}
（B） 22°
（C） 32°
（D） 45°
（E） 60°

3．The figure shows a horizontal track．Bob leaves the loading point from rest with initial tangential acceleration g ．He later experiences a constant angular acceleration from the loading point to the point p ．When he reaches the point p ，the total acceleration acting on him is 4 g ．What is the angle θ_{ρ}（in rad．）？

（A）$\sqrt{2}$
（B）$\sqrt{13} / 2$
（C）$\sqrt{15} / 2$
（D）$\sqrt{6}$
（E）$\sqrt{20} / 3$

4．The figure shows a uniform disk，with mass $M=2.5 \mathrm{~kg}$ ，radius $R=20 \mathrm{~cm}$ ，and moment of inertia $I=M R^{2} / 2$ ，mounted on a fixed horizontal axle．A block with mass $m=1.0 \mathrm{~kg}$ hangs from a massless cord that is wrapped around the rim of the disk．The cord does not slip，and there is no friction at axle．What is the angular acceleration of the disk（ g is gravitational acceleration）？
（A） $20 \mathrm{~g} / 9$
（B） $5 \mathrm{~g} / 2$
（C） $10 \mathrm{~g} / 7$
（D） $7 \mathrm{~g} / 3$
（E） $10 \mathrm{~g} / 9$

第2面，共4頁

※ 考生請注意：本試題不可使用計算機。請於答案卷上並依題號順序作答，違反者，不予計分。

5．A uniform ball of mass M ，radius R ，and moment of inertia（ $2 / 5$ ）$M R^{2}$ ，rolls smoothly（no sliding）from rest down a ramp at the angle $\theta=30.0^{\circ}$ ．The coefficient of kinetic friction between the block and the ramp is $\mu_{k}=1 /(3 \sqrt{3})$ ．The ball descends a vertical height h to reach the bottom of the ramp．What is its speed at the bottom？
（A）$\sqrt{3 g h / 5}$
（B）$\sqrt{2 g h / 3}$
（C）$\sqrt{10 g h / 21}$
（D）$\sqrt{10 g h / 7}$
（E）$\sqrt{5 g h / 3}$

6．A pirate ship 560 m from a fort defending a harbor entrance．A defense cannon，located at the sea level， fires ball at the initial speed $v_{0}=80.0 \mathrm{~m} / \mathrm{s}$ ．At what angle θ_{0} from the horizontal must a ball be fired to hit the ship？Use $g=10.0 \mathrm{~m} / \mathrm{s}^{2}$
（A） 25°
（B） 45°
（C） 40° or 50°
（D） 30° or 60°
（E）None of the above．

7．Water flow smoothly through the pipe shown in the figure， descending in the process．Rank the four numbered sections of pipe according to the water pressure p within them．

8．At $t=0$ ，the displacement $x(0)$ of the block in a linear oscillator（spring－block system）is -8.0 cm ．The block＇s velocity $v(0)$ then is $0.3 \mathrm{~m} / \mathrm{s}$ ，and its acceleration $a(t)$ is $+2.0 \mathrm{~m} / \mathrm{s}^{2}$ ．What is the amplitude x_{m} ？
（A） 8.0 cm
（B） 6.0 cm
（C） 10.0 cm
（D） 4.0 cm
（E） 12.0 cm

9．Bats navigate and search out prey by emitting，and then detecting reflections of，ultraviolet waves， which are sound waves with frequencies greater than can be heard by a human．Suppose a bat emits ultrasound at frequency $f_{b e}=85 \mathrm{kHz}$ while flying with velocity $\vec{v}_{\mathrm{b}}=(40.0 \mathrm{~m} / \mathrm{s}) \hat{\imath}$ as it chases a moth that flies with velocity $\vec{v}_{\mathrm{m}}=(20.0 \mathrm{~m} / \mathrm{s}) \hat{\imath}$ ．What frequency f_{bd} does a bat detect in the returning echo from the moth（the speed of sound is $340 \mathrm{~m} / \mathrm{s}$ ）？
（A） 76 kHz
（B） 96 kHz
（C） 91 KHZ
（D） 108 KHz
（E） 100 KHz

10．Positive charge Q is distributed uniformly throughout an insulating sphere of radius R ，centered at the origin．A particle with positive charge Q is placed at $x=2 R$ on the x axis．The magnitude of the electric field at $x=R / 2$ on the x axis is：
（A）$Q / 9 \pi \varepsilon_{0} R^{2}$
（B）$Q / 8 \pi \varepsilon_{0} R^{2}$
（C）．$Q / 72 \pi \pi \varepsilon_{0} R^{2}$
（D）． $17 Q / 72 \pi E_{0} R^{2}$
（E）none of these

第3頁，共4頁

※考生請注意：本試題不可使用計算機。請於答案卷上並依題號順序作答，違反者，不予計分。

11．A cyclotron operates with a fixed magnetic field and a fixed frequency．If R denotes the radius of the final point，the final particle energy is proportional to
（A） $1 / R$
（B）R
（C）R^{2}
（D）R^{3}
（E） $1 / R^{2}$

12．A cylindrical region of radius R contains a uniform magnetic field parallel to its axis．The field is zero outside the cylinder．If the magnitude of the field is changing at the rate $d B / d t$ ，the electric field induced at a point $2 R$ from the cylinder axis is：
（A） 0
（B） $2 R \mathrm{~dB} / \mathrm{dt}$
（C）$R \mathrm{~dB} / \mathrm{dt}$
（D）$(R / 2) d B / d t$
（E）$(R / 4) d B / d t$

13．A flat coil of wire，having 5 turns，has an inductance L ．The inductance of a similar coil（with the same length and cross sectional area）having 20 turns is：
（A） 4 L
（B） $\mathrm{L} / 4$
（C） 16 L
（D）L／16
（E） L

14．A spherical conducting shell has charge Q ．A particle with charge q is placed at the center of the cavity． The charge on the inner surface of the shell and the charge on the outer surface of the shell， respectively，are：
（A） $0, Q$
（B）$q, Q-q$
（C）Q， 0
（D）$-\mathrm{q}, \mathrm{Q}+\mathrm{q}$
（E）－q－Q，Q

15．A loop of wire carrying a current of 2．0 A is in the shape of a right triangle with two equal sides，each 15 cm long．A 0.7 T uniform magnetic field is in the plane of the triangle and is perpendicular to the hypotenuse．The resultant magnetic force on the two equal sides has a magnitude of：
（A） 0 N
（B） 0.21 N
（C） 0.30 N
（D） 0.41 N
（E） 0.51 N

16．The temperature of n moles of an ideal monatomic gas is increased by ΔT at constant pressure．The energy Q absorbed as heat，change $\Delta \mathrm{E}_{\text {int }}$ in internal energy，and work W done by the environment are given by：
（A）$Q=(5 / 2) n R \Delta T, \Delta E_{\text {int }}=0, W=-n R \Delta T$
（B）$Q=(3 / 2) n R \Delta T, E_{\text {int }}=(5 / 2) n R \Delta T, W=n R \Delta T$
（C）$Q=(5 / 2) n R \Delta T, E_{\text {int }}=(3 / 2) n R \Delta T, W=n R \Delta T$
（D）$Q=(3 / 2) n R \Delta T, E_{\text {int }}=(5 / 2) n R \Delta T, W=-n R \Delta T$
（E） $\mathrm{Q}=(5 / 2) n R \Delta T, \mathrm{E}_{\mathrm{int}}=(3 / 2) n R \Delta T, W=-n R \Delta T$

考試科目：普通物理學

考試日期：0212，節次：2

第4頁，共4頁

※ 考生請注意：本試題不可使用計算機。請於答案卷上並依題號順序作答，違反者，不予計分。

17．A $1-\mu \mathrm{F}$ capacitor is connected to an emf that is increasing uniformly with time at a rate of $100 \mathrm{~V} / \mathrm{s}$ ．The displacement current between the plates is：
（A） 0 A
（B） $1.0 \cdot 10^{-8} \mathrm{~A}$
（C） $1.0 \cdot 10^{-6} \mathrm{~A}$
（D） $1.0 \cdot 10^{-4} \mathrm{~A}$
（E） 100 A

18．A capacitor in an LC oscillator（a circuit only consists of inductor and capacitor with no resistance and no power supply；its oscillation is similar to S．H．M）has a maximum potential difference of 15 V and a maximum energy of $360 \mu \mathrm{~J}$ ．At a certain instant the energy in the capacitor is $40 \mu \mathrm{~J}$ ．At that instant what is the potential difference across the capacitor？
（A） 0 V
（B） 5 V
（C） 10 V
（D） 15 V
（E） 20 V

19．Two long straight wires pierce the plane of the paper at vertices of an equilateral triangle as shown below．They each carry 2.0 A ，out of the paper．The magnetic field at the third vertex（P）has magnitude （ $\mu_{0}=4 \pi \cdot 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$ ）：
（A） $5.0 \cdot 10^{-6} \mathrm{~T}$
（B） $8.7 \cdot 10^{-6} \mathrm{~T}$
（C） $1.0 \cdot 10^{-5} \mathrm{~T}$
（D） $1.7 \cdot 10^{-5} \mathrm{~T}$
（E） $2.0 \cdot 10^{-5} \mathrm{~T}$

20．A liquid of refractive index $n=4 / 3$ replaces the air between a fixed wedge formed from two glass plates （ $n=1.5$ ）as shown．As a result，the spacing between adjacent dark bands in the interference pattern：
（A）increases by a factor of $4 / 3$
（B）increases by a factor of 2
（C）remains the same
（D）decreases to $3 / 4$ of its original value
（E）decreases to $1 / 3$ of its original value

