第1頁，共2頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．A neutron with kinetic energy K enters a nucleus，and experiences an external potential energy $\mathrm{V}=0$ at the nuclear surface，and a very rapidly dropping internal potential energy $\mathrm{V}=-\mathrm{V}_{0}$ ，as illustrated in the Figure 1 ．Considering the scattering process as a one dimensional step potential，please calculate the reflection coefficient R in terms of K and V_{0} ． （15\％）

Figure 1

2．（a）Please derive the Maxwell＇s speed distribution law：

$$
P(v)=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-M v^{2} / 2 R T}
$$

from Boltzmann distribution $\quad f(E)=A e^{-E / k T}$
where M is the molar mass of the gas，R is the gas constant，T is the gas temperature，v is the molecular speed，and E is the gas energy．
（b）use the result to find the average speed v_{avg}
（c）use the result to find the root－mean－square speed $v_{\text {rns }}$
（d）use the result to find the most possible speed v_{p}

3．In an elastic scattering event，as shown in Figure 2，the scattering vector q is defined as $q=\mathbf{k}_{\boldsymbol{f}}$－ $\mathbf{k}_{\boldsymbol{i}}$ ，where $\mathbf{k}_{\boldsymbol{i}}$ and \mathbf{k}_{f} ， with the vector length \mathbf{k} ，are the incident and scattering wavevectors respectively．From the Born approximation：

$$
\psi_{1}=-\frac{e^{i \mathbf{k} r}}{r} \frac{2 \mu}{\hbar^{2}(4 \pi)} \int V\left(\mathbf{r}^{\prime}\right) e^{i \mathbf{q} \cdot \mathbf{r}^{\prime}} d^{3} \mathbf{r}^{\prime}=\frac{e^{i \mathbf{k} r}}{r} f(\theta, \phi)
$$

系所組別：物理學系

考試科目：近代物理學

第2頁，共2頁

where μ is the reduced mass．
Show that（a），（if we only focus on spherically symmetric，i．e．，$V(\mathbf{r})=V(\mathrm{r})$ ）

$$
f(\theta)=-\frac{2 \mu}{\hbar^{2}} \int \frac{\operatorname{sinqr^{\prime }}}{\mathrm{q}} V\left(\mathrm{r}^{\prime}\right) \mathrm{r}^{\prime} \mathrm{dr}^{\prime}
$$

here $\mathrm{q}=2 \mathrm{k} \sin (\theta / 2)$ ，the vector length of q
（b）calculate $f(\theta)$ ，for the potential：（ 10% ）

$$
V(\mathrm{r})=-\frac{z Z \mathrm{e}^{2} e^{\left(-\frac{\mathrm{r}}{a}\right)}}{\mathrm{r}}
$$

where ze and Ze represent the charges of incident particle and target respectively．
（c）use the results from（b）to calculate the scattering differential cross section

$$
\frac{d \sigma}{d \Omega} \equiv|f(\theta)|^{2}
$$

（d）show that when $a \rightarrow \infty$ ，we can recover the classical Rutherford scattering differential cross section

Figure 2

4．Evaluate
（a） $\exp \left(\frac{i a \hat{\mathrm{p}}_{x}}{\hbar}\right) f(x)$ ，where a is a constant （10\％）
（b）if ψ is real，show that $\left\langle\hat{\mathrm{p}}_{x}\right\rangle=\int \psi^{*} \hat{\mathrm{p}}_{x} \psi d x=0$

5．calculate the commutators：
（a）$\left\lfloor\widehat{x}, \widehat{L}^{2}\right\rfloor$
（5\％）
（b）$\left\lfloor\hat{\mathrm{p}}_{x}, \hat{L}^{2}\right\rfloor$

