## 國立成功大學 114學年度碩士班招生考試試題

編 號: 38

系 所:物理學系

科 目:物理數學

日 期: 0211

節 次:第1節

注 意: 1.不可使用計算機

2.請於答案卷(卡)作答,於 試題上作答,不予計分。 1. (a) Calculate the first three non-zero terms of the Maclaurin series of  $\frac{1+x}{x} - \frac{1}{\sin x}$ . [10 points]

(b) Find 
$$\lim_{x\to 0} \left(\frac{1+x}{x} - \frac{1}{\sin x}\right)$$
. [5 points]

- 2. Consider the matrix  $M = \begin{pmatrix} 5 & -2 \\ -2 & 2 \end{pmatrix}$ .
  - (a) Find the characteristic equation of M, and solve for the eigenvalues. [10 points]
  - (b) Show that M satisfies its own characteristic equation. [5 points]
- 3. Consider the vector  $\vec{V} = x^2 \hat{i} + 5x \hat{j}$ .
  - (a) Calculate  $\oint \overline{V} \cdot d\overline{r}$  around the boundary of the square with vertices (1,0), (0,1), (-1,0), (0,-1) on the x-y plane counterclockwise. [10 points]
  - (b) State Stokes' theorem, and use it to calculate the integration in (a). [10 points]
- 4. A rocket of (variable) mass m is propelled by steadily ejecting part of its mass at velocity u (constant with respect to the rocket). Gravity can be neglected.
  - (a) The differential equation for the velocity v of the rocket is m(dv/dm) = -u as long as  $v \ll c$ , where c is the speed of light. Find v as a function of m if  $m = m_0$  when v = 0. [5 points]
  - (b) In the relativistic region (v/c not negligible), the rocket equation is  $m\frac{dv}{dm} = -u\left(1 \frac{v^2}{c^2}\right)$ . Solve this differential equation to find v as a function of m if  $m = m_0$  when v = 0. [10 points]
- 5. Given the function  $f(x) = (\pi x)/2$  on  $(0, \pi)$ .
  - (a) Find the Fourier sine series of period  $2\pi$  for f(x). [10 points]
  - (b) Calculate the average of  $[f(x)]^2$  and use the result in (a) to evaluate  $\sum_{n=1}^{\infty} \frac{1}{n^2}$ . [10 points]
- 6. (a) Show that the poles in  $\oint \frac{1+e^{i\pi z}}{(z-1)^2(z+1)^2} dz$  are simple poles, and evaluate the contour integration around the upper half plane. [10 points]
  - (b) Use the result in (a) to evaluate  $\int_0^\infty \frac{\cos^2(\alpha\pi/2)}{\left(1-\alpha^2\right)^2} d\alpha$ . [5 points]