- 1, (10%) Give some experimental facts that support the wave -particle duality postulation.
- 2, (10%) (i) Discuss the origin of nuclear energy, thus we can say that mass is converted to energy. (ii) Give example that energy is realy converted into mass.
- 3 , (10%) What are the forces that forms molecules, atoms, nucleus and protons.
- 4, (20%) L is the angular momentum operator.(i) Discuss the eigenvalues of L^2 and L_3 . (ii) Why we only talk about L_3 not L_4 or L_5 . (iii) What is the meaning of space quantization of angular momentum. Is there any experimental supports? (iv) If we have $l_1 = 1$ and $l_2 = 2$ what are the possible resultant $l_3 = 1$?
- 5, (15%) (i) Prove that for real potential the energy-eigen function of Schrodinger equation is stationary and the probability is a constant. (ii) Why usually the eigen values of a bound state are discrete? (Consider one dimension Schrodinger equation.)
- 6, (15) The helium atom has two electrons. Why for n=1 it can only be in S=0 state? For n=1, S=0 or 1. Which one has higher energy? Why? Can there be transitions between different S states? Why?
- 7, (20%) Consider the potential barrier as shown in the figure.

Calculate the transmission coefficient. Discuss the dependence of this coefficient. This is the so called tunnelling effect. Give a physical phenomenum that can be explained by this fact.

$$V = \infty \quad \text{for} \quad x < 0$$

$$V = -V_1 \quad \text{for} \quad 0 < x < 0$$

$$V = V_2 \quad \text{for} \quad a < x < b$$

$$V = 0 \quad \text{for} \quad x > b$$

$$0 < E < V_2$$