9D 學年度 國立成功大學 奶 然 新 近代 奶 稅 試題 共 2 頁 項 士班招生考試 奶 於 所 近代 奶 稅 試題 第 1 頁

Modern Physics

2002/04

Physical constant	ts:	
Avogadro's number:	$N_a=6.02x10^{23}$ particles/mol	Boltzmann's constant: $k=1.38x10^{-23}$ J/K
Coulomb constant: $k=8.987x10^9 N \cdot m^2/C^2$		Fundamental charge: e=1.6x10 ⁻¹⁹ C
Mass of electron: me	$=9.1x10^{-31} Kg$	Mass of proton: $M_p = 1.672623x10^{-27} Kg = 938.3 MeV$
Mass of neutron: M _n	$=1.674929x10^{-27} Kg = 939.6 MeV$	Mass of pion: $M_{\Pi^-} = 139.6 \text{ MeV}$
Mass of unit: u=1.66		Planck's constant: h=6.6x10 ⁻³⁴ J·s
Speed of light: c=29	9792458 m/s	Constant of gravitation: $G=6.67x10^{-11}N \cdot m^2/Kg^2$
Fine structure constant: $\alpha = 7.297x10^{-3}$		Gas constant: R=8.3 J/mol·K
Permeability of free	space: $\mu_0 = 4\pi x 10^{-7} \text{ N/A}^2$	
Problem 1 (5%)	[in a simple harmonic oscillator with mass m and spring
Problem 2 (5%)	Write down the Lorentz transformation of two coordinate systems, $S'(x', y', z', t')$ and $S(x, y, z, t)$, that the origins are coincident at time $t = t' = 0$ and S' is moving, relative to S , with speed u along the x (or x') axis and with the y' and z' axes parallel, respectively, to the y and z axes. $(x', y', z', t') = $	
Problem 3 (5%)	As describe in problem 2, write down the velocity transformation. (v'x, v'y, v'z) =	
Problem 4 (5%)	Why is it extremely difficult to observed the Compton effect using visible light?	
Problem 5 (5%)	lepton number :	are violated by the reaction, $n \rightarrow p + \pi^{T}$.
Problem 6 (5%)	Briefly describe the Meissner et	ffect in a superconductor
Problem 7 (5%)	Explain why, physically, you we decrease as the temperature incr	ould expect the mean free path of electrons in a metal to

9D 學年度 國立成功大學 扮 22 系 近 代 切 2 試題 共 2 頁 所 近 代 切 2 試題 第 2 頁

Problem 8 (5%)	Consider the dipole allowed transitions between a pair of doublet energy states in sodium (Na), write down the possible transitions of $^2D_j \leftrightarrow ^2P_j$.		
Problem 9 (5%)	In which way would a broken holographic film (1/3 left) affect its image while reconstruction?		
	Write down the conditions of the wave function solved from the Schrödinger equation to be considered acceptable.		

- Problem 11 (20%) (A) What nonclassical postulates were proposed by Niels H. D. Bohr in order to solve the observed spectrum of hydrogen? (5/20)
 - (B) Derive the quantization radius r_n and energy E_n of hydrogen atoms with Bohr's postulates. (10/20)
 - (C) What are the deficiencies of the Bohr model?(5/20)
- Problem 12 (15%) The Royal Swedish Academy of Sciences has decided to award the 1997 Nobel Prize in Physics jointly to Professor Steven Chu, Professor Claude Cohen-Tannoudji, and Dr. William D. Phillips, for development of methods to cool and trap atoms with laser light.
 - (A) What is the mechanism for laser light to cool and trap neutral atoms? Could we use an intensified tungsten light? (5/15)
 - (B) What would be the speed of free hydrogen atoms when the temperature is one-millionth of a degree Kelvin (termed 1 μK, microkelvin)? (5/15)
 - (C) What are the advantages to study the atoms at ultracold temperature? (5/15)

Problem 13 (15%) The ground state wave function of hydrogen atoms is $\Psi_{100} = C_{100}e^{-Zr/a_0}$.

- (A) Determine the constant C_{100} . (5/15)
- (B) At what value of r has the most probability to find the electron of the ground state hydrogen? (10/15)