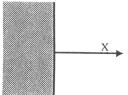
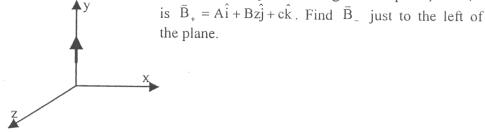


- 1. A soap bubble of radius R_o is slowly given a charge q and its radius increases slightly to R . If p is the atmospheric pressure, show that $q^2 = 32\pi^2\epsilon_o p(R^3 R_o^3)$. (10)
- 2. Two infinitely long metal plates, at y = 0 and y = a, are connected at $x = \pm b$ by metal strips maintained at a constant potential V_0 , as shown in the figure. Find the potential inside the rectangular pipe.



(10)

- 3. Two capacitors C_1 and C_2 are charged to voltage V_1 and V_2 , respectively, and then connected in parallel, i.e. positive to positive terminal and negative to negative.
 - a) What is the final voltage of each capacitor?
 - b) What happen to the stored energy?


(10)

4. a) A dielectric occupies the half-space x<0 while the other space x>0 is vacuum. The \vec{D} field just inside the dielectric x = 0 is $\vec{D}_{\perp} = a\hat{i} + bz\hat{j} + c\hat{k}$, and the

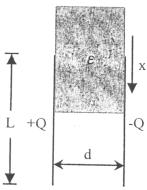
electric field \vec{E} just outside the dielectric is $\vec{E}_+ = A\hat{i} + Bz\hat{j} + C\hat{k}$. Find the surface charges σ_{free} , σ_{pol} , and dielectric constant ε in terms of a, b, c and A, B, C.

b) The region near the yz plane is empty except for a surface current $\vec{K} = K\hat{j}$ flowing in the yz-plane. The magnetic field just to the right of the plane, $x = 0_+$

(15)

- 5. A short circular cylinder of radius a and length L, (L \sim a), carries a "frozen-in "uniform magnetization \bar{M} parallel to its axis.
 - a) Find the bound currents.
 - b) Make careful sketch of bound surface current $\ \bar{K} \ \cdot \ \bar{M} \ \cdot \ \bar{B}$ and $\ \bar{H}$.

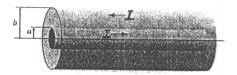
(10)


(91) 學年度 國立成功大學 碩士班招生考試

物理學系所

電 磁 學

試題 共 2 頁第 2 頁


6. A condenser with square conductor plates L×L and separation d has a piece of linear dielectric ε, LxLxd, which is inserted part way into the conductor as shown. The plates carry free charge ±Q.

- a) Find \vec{E} and \vec{D} inside the conductor (two separated regions).
- b) Find the energy W stored in the conductor .
- c) Find the force on the dielectric. Which direction in the force.
- d)Draw lines of \vec{E} and \vec{D} indicating clearly the regions of higher field intensity.
- e) Find the surface charges σ_i , σ_p , σ_i (free, polarization, total).

(20)

7. A long coaxial cable carries current I (the current flows down the surface of the inner cylinder, radius a, and back along the outer cylinder, radius b) as shown in figure. Find the magnetic energy stored in a section of length L.

(10)

8. At time t=0, there are electromagnetic fields in empty space given by

$$\vec{E}(\vec{r},0) = \begin{cases} \hat{i}E_o, & z \le 0 \\ 0, & z > 0 \end{cases}; \quad \vec{B}(\vec{r},0) = \begin{cases} \hat{j}E_o, & z < 0 \\ 0, & z > 0 \end{cases}$$

- a) Evaluate pointing vector \vec{S} , the momentum density \vec{g} , and energy density u everywhere in space.
- b) Write down the electromagnetic fields at any later time, t. (Do \underline{NOT} give a derivation of the results)

(10)

- 9. a) In regions of free space where there is no charge or current, write down the Maxwell's equations.
 - b) Derive from Maxwell's equations, the three dimensional wave equations of electromagnetic waves in vacuum ($\vec{E} \& \vec{B}$).

(10)