科目:近代物理學

Physical constants:

Speed of light: $c = 3.00 \times 10^8 \text{ m/s}$

Planck's constant: $h = 6.6 \times 10^{-34} \text{ J} \cdot \text{s}$

Fundamental Charge: e=1.60×10⁻¹⁹ C

Mass of electron: $m_e = 9.1 \times 10^{-31} \text{ kg}$

Mass of unit: $u=1.66\times10^{-27}$ kg

Coulomb's law constant $1/4\pi\epsilon_0=9\cdot10^9~\text{N}\cdot\text{m}^2/\text{C}^2$

 c^2 =931.5 MeV/ u

- 1. (20%) Briefly describe the following terms:
 - (a) Pair production and Dirac's interpretation.
 - (b) Fine structure and hyperfine splitting.
 - (c) Normal and Anomalous Zeeman effect.
 - (d) Neutrino and antineutrino.
- 2. (10%) Explain if an electron can be confined in an atomic nucleus by applying the uncertainty principle. The diameter of an atomic nucleus is on the order of magnitude of 10⁻¹⁵ m.
- 3. (10%) An electron-positron pair at rest annihilate, creating two photons. Find the wavelength and the momentum of the photon.
- 4. (20%) A particle of mass m is moving in a one-dimensional infinite square well of width a. The potential energy function V(x) is given as the following:

$$V(x)=0$$
 for $0 < x < a$

=∞ elsewhere

Find the possible allowed kinetic energies of the particle by using two different methods.

- (a) By using the Wilson-Sommerfeld quantization rules.
- (b) By using the Schrödinger equation.

國立成功大學九十四學年度碩士班招生考試試題

編號: 6 54 系所: 物理學系

科目:近代物理學

- 5. (10%) (a) Describe the forms of eigenfunctions for an atom with 2 electrons in the triplet state and the singlet state.
 - (b) What is the exchange force? Also compare the energy levels of the triplet state and the singlet state. Which is lower?
- 6. (20%) (a) ⁶C atoms are placed in a weak external field B=0.2 T. Construct a diagram to show the transitions allowed by the selection rules between the states 2p3s ¹P₁ and 2p² ¹D₂. How many spectral lines will be produced in these transitions?
 - (b) Redraw the transition diagram and determine the number of spectral lines when the atoms are placed in a strong external field B>>1 T.
- 7. (10%) What are the Einstein A and B coefficients? Why are they important to be applied in the principle of Laser?