國立成功大學九十五學年度碩士班招生考試試題

編號: E 47 系所: 物理學系

科目:古典力學

本試題是否可以使用計算機: □可使用 , ☑不可使用 (請命題老師勾選)

(每題25分,共100分)

- 1. Fig. 1 illustrates a mass m_1 driven by a sinusoidal force whose frequency is ω . The mass m_1 is attached to a rigid support by a spring of force constant k and slides on a second mass m_2 . The frictional force between m_1 and m_2 is represented by the damping parameter b_1 , and the frictional force between m_2 and the support is represented by b_2 . (a) Find the coupled eqs. for $x_1 \& x_2$; (b) By taking $F(t) = \text{Re} \left[F_0 e^{i\omega t} \right]$, $x_1(t) = \text{Re} \left[A_1 e^{i\omega t} \right]$, $x_2(t) = \text{Re} \left[A_2 e^{i\omega t} \right]$ with F_0 , $A_1 \& A_2$ complex, find the solutions of $x_1 \& x_2$.
- 2. As in fig. 2, a particle of mass m can slide freely along a wire AB whose perpendicular distance to the origin is h. The line OC rotates about the origin at a constant angular velocity $\dot{\theta} = \omega$. The position of the particle can be described in terms of the angle $\theta(t) = \omega t$ and the distance q(t) to the point C. If the particle is subject to a gravitational force (i.e. U = mgy), find the eq. of motion for q(t).
- 3. As in fig. 3, hard spheres of radius R_1 moving rightward are scattered by a hard sphere of radius R_2 at rest. Assume smooth surfaces and $m_1 \ll m_2$. (a) Show that the differential cross section is given by $\sigma(\psi) = \frac{-b}{\sin \psi} \frac{db}{d\psi}$, where b is the impact parameter and ψ the scattering angle; (b) Find $b(\psi)$ and then $\sigma(\psi)$.
- **4.** As in fig. 4, calculate the inertia tensor of a homogeneous cube of density ρ , sides of length b, with the center of mass at the origin and three adjacent edges along the coordinate axes.

