國立成功大學九十五學年度碩士班招生考試試題

編號: 6749 系所: 物理學系

科目:近代物理學

本試題是否可以使用計算機: □可使用 , □不可使用 (請命題老師勾選)

Physical constants:

Speed of light: $c = 3.00 \times 10^8$ m/s Planck's constant: $h = 6.6 \times 10^{-34}$ J·s Fundamental Charge: $e = 1.60 \times 10^{-19}$ C

Mass of electron: $m_e = 9.1 \times 10^{-31} \text{ kg}$

Mass of unit: $u=1.66 \times 10^{-27} \text{ kg}$

 c^2 =931.5 MeV/ u

- 1. (10%) The solar constant (=1353 W/m²) is defined as the solar energy falling per unit time at normal incidence on a unit area at the earth. Take the distance from the sun to the earth as 1.5×10^{11} m and the diameter of the sun as 1.39×10^{9} m.
 - (a) Calculate the rate of energy generation of the sun.
 - (b) The surface temperature of the sun is around 6000 K. Determine the Stefan-Boltzmann constant in Stefan's law from the data above.
- 2. (16%) A γ-ray photon of 0.511 MeV strikes a free electron in metal. What is the possible process for this collision: photoelectric effect, Rayleigh scattering, Compton effect, or pair production? You need to briefly describe these effects and then give your reason.
- 3. (12%) Staring with the relativistic expression for the energy and momentum, and using the operators for E and P, formulate a one dimensional Schrödinger equation for a free particle, and solve it by separation of variables.
- 4. (10%) What are the Hund rules? Plot energy levels of 2p3d configuration in LS coupling.
- 5. (12%) The model of free electrons in metal is simplified model by assuming that the potential energy in metal is zero, and a potential barrier V_0 exists at the metal boundary. For a electron with the kinetic energy E, the work function $(V_0 E)$ is 4 eV. Estimate the approximate penetration distance Δx for the electron out of the metal surface.

(背面仍有題目,請繼續作答)

國立成功大學九十五學年度碩士班招生考試試題

共 之頁,第2頁

編號: 6 49 系所: 物理學系

科目:近代物理學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

- 6. (15%) Two particles are moving inside a one dimensional system of length L. The quantum states for one particle is n=1 and for the other is n=2. Find the probability for both particles staying at the region $x=L/4 \pm L/20$, if they are (a) different particles and (b) identical particles, respectively.
- 7. (15%) (a) What differences exist in the classical (equipartition theorem) model, the Einstein model and the Deby model for estimating specific heat C_v of a crystalline dielectric solid?
 (b) Evaluate the C_v at T/θ<<1 and T/θ>>1 by the Deby model, where θ is the Deby temperature.
 (Note: ∫^x x³dx /(e^x 1) = π⁴ /15)
- 8. (10%) The rotational absorption lines of $l=0 \rightarrow l=1$ for C^{12} O^{16} and C^{x} O^{16} are 1.153×10^{11} Hz and 1.102×10^{11} Hz, respectively. Find the mass number x of the unknown C^{x} .