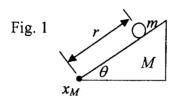
國立成功大學九十六學年度碩士班招生考試試題


共 1 頁,第1頁

編號: 48 系所:物理學系

科目:古典力學

本試題是否可以使用計算機: □可使用 , ☑不可使用 (請命題老師勾選)

1. A cylinder of radius R and mass m goes down on a wedge of angle θ and mass M that can move without friction on a smooth horizontal surface as shown in Fig. 1. Find the equations of motion (i.e. r(t) and $x_M(t)$) for the cylinder and wedge when the cylinder is (a)(15%) slipping without rolling (b) (10%) rolling without slipping down the incline.

2. An equilateral triangle of mass M and side length a is suspended by a wire of mass m, length L and radius R from the ceiling. The central axis of the wire passes through the center of mass of the triangle. (a) (10%) Find the moment of inertia of this equilateral triangle. (b) (10%) Prove that $\tau = -\kappa\theta, \quad \kappa = \frac{\pi R^4 S}{2L} \quad \text{where } S \text{ is the shear modulus of this wire. (c) (5%) The oscillation frequency.}$

- 3. (25%) Prove that the Hamiltonian of a particle of mass m under the electromagnetic field is $H = \frac{|\mathbf{p} q\mathbf{A}|^2}{2m} + q\phi$. If this particle is under the static electromagnetic field, we can get $\frac{1}{2}mv^2 + q\phi = E = \text{constant}$ from $\int \mathbf{F} \cdot d\mathbf{r} = -q\Delta\phi = \Delta T$. Is it a conflict between H and E?
- 4. (25%) An object in equilibrium consists of three balls of mass m connected by springs of length b and spring constant k. as shown in Fig.4. At time t=0, a small ball of mass m/2 and speed ν collides with this object. If the collision time is very short and all the motions are just in one dimension, find the equations of motion of this object. (i.e. $x_1(t), x_2(t), x_3(t)$)

Fig. 4
$$\underset{m/2}{\overset{\bullet}{\bigvee}} \overset{\bullet}{\bigvee} \overset{\bullet}{$$