系所組別：數學系㷳用數學

考試科目：線性代數

※考生請注意：本試題 \square 可 可不可 使用計算機
（1）(25%) Please do the following problems．
（a）（ 8% ）State the definition of a vector space $(V,+, \cdot, F)$ ．Are $\left(\mathbb{R}^{n},+, \cdot, \mathbb{C}\right)$ and $\left(\mathbb{C}^{n},+, \cdot, \mathbb{R}\right)$ vector spaces？State your reason．
（b）（ 5% ）If W and S are subspaces of V ，are $W \cup S, W \cap S$ and $W+S$ subspaces？ State your reason．．
（c）（6\％）Let $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be a linearly independent subset of a vector space V ， prove that $\left\{x_{1}-x_{k}, x_{2}-x_{k}, \cdots, x_{k-1}-x_{k}, x_{k}\right\}$ is also linearly independent．
（d）(6%) Let $W=\left\{\left.\left[\begin{array}{ll}a & c \\ c & b\end{array}\right] \right\rvert\, a, b, c \in \mathbb{R}\right\}$ ．Show that W is a subspace of $M_{2 \times 2}(\mathbb{R})$ ， where $M_{2 \times 2}(\mathbb{R})$ is the set of 2×2 matrices with entries in \mathbb{R} ，and find $\operatorname{dim} W$ ．
（2）(30%) Let $T: V \rightarrow W$ be linear，where V an W are vector spaces over the same field F ．
（a）$(10 \%) T$ is said to be independence preserving if $T(I)$ is linearly independent in W whenever I is linearly independent in V ．Prove that T is independence preserving if and only if T is one－to－one．
（b）(20%) If $V=W$ and $\operatorname{dim} V<+\infty$ ，show that
（i）（5\％）λ is an eigenvalue of T if and only if $p(\lambda)=0$ ，where p is the minimal polynomial of T ．
（ii）(5%) Let $V=W=\mathbb{R}^{3}$ and $T(x, y, z)=(-x+y-z, y, 3 x-y+3 z)$ ．Find the minimal polynomial of T ．
（iii）（ 10% ）Let M be a non－zero and proper subspace of \mathbb{R}^{3} and P be the orthogonal projection from \mathbb{R}^{3} onto M ．Find the matrix representation of P with respect to the standard basis．
（3）(15%) Please do the following problems．
（a）（6\％）Find new coordinates x^{\prime}, y^{\prime} so that the following quadratic form can be written as $\lambda_{1}\left(x^{\prime}\right)^{2}+\lambda_{2}\left(y^{\prime}\right)^{2}$ ．

$$
3 x^{2}+2 x y+3 y^{2}
$$

（b）(9%) Let $A=\left[\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right]$ ．Find an orthogonal matrix P and a diagonal matrix D such that $P^{-1} A P=D$ ．
（4）(20%) Let $\mathbf{P}_{2}(\mathbb{R})=\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}$ and define the inner product $\langle\cdot, \cdot\rangle$ by

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t, \quad \forall f, g \in \mathbf{P}_{2}(\mathbb{R})
$$

Let T be defined by $T(f)=f^{\prime}+3 f, \forall f \in \mathbf{P}_{2}(\mathbb{R})$ ．

系所組別：數學系㷳用數學
考試科目：線性代數
（a）（4\％）Show that T is linear and find the matrix representation of P with respect to the basis $\mathcal{B}=\left\{1, x, x^{2}\right\}$ ，denoted by $[T]_{\mathcal{B}}$ ．
（b）(6%) Is $[T]_{\mathcal{B}}$ diagonalizable？If not，find a matrix Q such that $Q^{-1}[T]_{\mathcal{B}} Q$ is the Jordan form of $[T]_{\mathcal{B}}$ ．
（c）(10%) Find $T^{*}(f)$ ，where $f(x)=6 x^{2}-4 x+1$ ．
（5）（10\％）Let T and U be linear operators on \mathbb{R}^{3} defined by

$$
T(x, y, z)=(-3 x+3 y-2 z,-7 x+6 y-3 z, x-y+2 z)
$$

and

$$
U(x, y, z)=(y-z,-4 x+4 y-2 z,-2 x+y+z), \quad \forall(x, y, z) \in \mathbb{R}^{3}
$$

Show that T and U are not similar by finding their Jordan canonical forms．

