編號:

系所組別: 數學系應用數學

考試科目: 高等微積分

39

※考生請注意:本試題 🗌 可 🖸 不可 使用計算機

- 1. Let $\{x_k\}$ be a bounded sequence in \mathbb{R} , and let $Y_m = \sup\{x_k \mid k \ge m\}$.
 - (a) (6 points) Show that $\lim_{m\to\infty} Y_m$ exists.
 - (b) (6 points) The limit superior of the sequence $\{x_k\}$, denoted $\limsup_{k\to\infty} x_k$, is defined by $\limsup_{k\to\infty} x_k = \lim_{m\to\infty} Y_m$. Show that $\limsup_{k\to\infty} x_k = a$ if and only if for any $\epsilon > 0$, there are infinitely many k for which $x_k > a \epsilon$ but only finitely many for which $x_k > a + \epsilon$.

2. Let
$$f(x,y) = \begin{cases} \frac{x(x^2 - y^2)}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) (6 points) Show that f is continuous at (0,0).
- (b) (6 points) For each unit vector $u \in \mathbb{R}^2$, show that the directional derivative of f at (0, 0) in the direction u exists, and compute it.
- (c) (4 points) Show that f is not differentiable at (0,0).
- 3. (10 points) Let S be a compact subset of \mathbb{R}^n . Assume that $f: S \to \mathbb{R}$ is continuous, and f(x) > 0 for every $x \in S$. Show that there is a number c > 0 such that $f(x) \ge c$ for every $x \in S$.
- 4. (10 points) Find the 3rd-order Taylor polynomial of $f(x, y, z) = x^2 y^2 + z y$ based at a = (1, 2, 1)
- 5. (a) (4 points) Let $f(x, y) = (x + 2y, e^{2x} \sin y, x + \log(1 + y^2))$, and $g : \mathbb{R}^2 \to \mathbb{R}^2$ be of class C^1 with g(1, 2) = (0, 0), and $Dg(1, 2) = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$. Compute $D(f \circ g)(1, 2)$.
 - (b) (6 points) Suppose that f is a homogeneous function of degree a on \mathbb{R}^n , i.e. $f(tx) = t^a f(x)$ for all t > 0 and $x \neq 0$. Show that $\sum_{j,k=1}^n x_j x_k \frac{\partial^2 f}{\partial x_j \partial x_k} = a(a-1)f$.
- 6. (12 points) Let $f(x,y) = (2x^2 + y^2)e^{-x^2 y^2}$. Find and classify the critical points of f.
- 7. Let x_1, x_2, \ldots, x_n denote nonnegative numbers, and c > 0.
 - (a) (8 points) Use Lagrange's method to find the maximum of the product $x_1x_2\cdots x_n$ subject to the constraint $x_1 + x_2 + \cdots + x_n = c$.
 - (b) (6 points) Derive the inequality of geometric and arithmetic means, i.e. $(x_1x_2\cdots x_n)^{1/n} \leq \frac{x_1+x_2+\cdots+x_n}{n}$, and show that the equality holds if and only if the x_j 's are all equal.
- 8. (a) (6 points) Evaluate $\int_{0}^{2} \int_{y/2}^{1} y e^{-x^{3}} dx dy$
 - (b) (6 points) Let S be the region in the first quadrant bounded by the curves xy = 1, xy = 3, $x^2 y^2 = 1$, and $x^2 y^2 = 4$. Compute $\iint_S (x^2 + y^2) dA$.
 - (c) (4 points) Let R be a regular region in ℝ³ with piecewise smooth boundary, and let F : ℝ³ → ℝ³ be a vector field defined by F(x, y, z) = xi + yj + zk. Show that the volume of R is ¹/₃ ∫∫_{AR} F · n dA.

考試日期:0219,節次:3