系所組別：數學系應用數學

考試科目：高等微積分

※ 考生請注意：本試題 \square 可 曰不可 使用計算機

1．Let $\left\{x_{k}\right\}$ be a bounded sequence in \mathbb{R} ，and let $Y_{m}=\sup \left\{x_{k} \mid k \geq m\right\}$ ．
（a）（6 points）Show that $\lim _{m \rightarrow \infty} Y_{m}$ exists．
（b）（6 points）The limit superior of the sequence $\left\{x_{k}\right\}$ ，denoted $\limsup _{k \rightarrow \infty} x_{k}$ ，is defined by $\limsup \operatorname{sim}_{k \rightarrow \infty} x_{k}=\lim _{m \rightarrow \infty} Y_{m}$ ．Show that $\lim \sup _{k \rightarrow \infty} x_{k}=a$ if and only if for any $\epsilon>0$, there are infinitely many k for which $x_{k}>a-\epsilon$ but only finitely many for which $x_{k}>a+\epsilon$ ．
2．Let $f(x, y)=\left\{\begin{array}{cl}\frac{x\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0), \\ 0, & \text { if }(x, y)=(0,0) .\end{array}\right.$
（a）（6 points）Show that f is continuous at $(0,0)$ ．
（b）（6 points）For each unit vector $u \in \mathbb{R}^{2}$ ，show that the directional derivative of f at $(0,0)$ in the direction u exists，and compute it．
（c）（4 points）Show that f is not differentiable at $(0,0)$ ．
3．（10 points）Let S be a compact subset of \mathbb{R}^{n} ．Assume that $f: S \rightarrow \mathbb{R}$ is continuous，and $f(x)>0$ for every $x \in S$ ．Show that there is a number $c>0$ such that $f(x) \geq c$ for every $x \in S$ ．
4．（10 points）Find the 3rd－order Taylor polynomial of $f(x, y, z)=x^{2} y^{2}+z y$ based at $a=(1,2,1)$
5．（a）（4 points）Let $f(x, y)=\left(x+2 y, e^{2 x} \sin y, x+\log \left(1+y^{2}\right)\right)$ ，and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be of class C^{1} with $g(1,2)=(0,0)$ ，and $D g(1,2)=\left(\begin{array}{rr}1 & -1 \\ 0 & 2\end{array}\right)$ ．Compute $D(f \circ g)(1,2)$ ．
（b）（6 points）Suppose that f is a homogeneous function of degree a on \mathbb{R}^{n} ，i．e．$f(t x)=t^{a} f(x)$ for all $t>0$ and $x \neq 0$ ．Show that $\sum_{j, k=1}^{n} x_{j} x_{k} \frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}=a(a-1) f$ ．

6．（12 points）Let $f(x, y)=\left(2 x^{2}+y^{2}\right) e^{-x^{2}-y^{2}}$ ．Find and classify the critical points of f ．
7．Let $x_{1}, x_{2}, \ldots, x_{n}$ denote nonnegative numbers，and $c>0$ ．
（a）（8 points）Use Lagrange＇s method to find the maximum of the product $x_{1} x_{2} \cdots x_{n}$ subject to the constraint $x_{1}+x_{2}+\cdots+x_{n}=c$ ．
（b）（6 points）Derive the inequality of geometric and arithmetic means，i．e．$\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \leq$ $\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$ ，and show that the equality holds if and only if the x_{j}＇s are all equal．
8．（a）（6 points）Evaluate $\int_{0}^{2} \int_{y / 2}^{1} y e^{-x^{3}} d x d y$
（b）（6 points）Let S be the region in the first quadrant bounded by the curves $x y=1, x y=3$ ， $x^{2}-y^{2}=1$ ，and $x^{2}-y^{2}=4$ ．Compute $\iint_{S}\left(x^{2}+y^{2}\right) d A$ ．
（c）（4 points）Let R be a regular region in \mathbb{R}^{3} with piecewise smooth boundary，and let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a vector field defined by $F(x, y, z)=x \mathrm{i}+y \mathrm{j}+z \mathrm{k}$ ．Show that the volume of R is $\frac{1}{3} \iint_{\partial R} F \cdot n d A$ ．

