國立成功大學一〇一學年度碩士班招生考試試題

Work out all problems and no credit will be given for an answer without reasoning.

- 1. (a) (8%) Let B be a subset of a vector space V. Show that B is a basis for V if and only if every member of V is a unique linear combination of the elements of B.
 - (b) (4%) Let T be a linear transformation of a vector space V. Prove that the set $\{\mathbf{v} \in V \mid T(\mathbf{v}) = 0\}$, the kernel of T, is a subspace of V.
 - (c) (8%) Let V and W are vector spaces over a field F. Define a vector space isomorphism from V to W is a one-to-one linear transformation from V onto W. If V is a vector space over F of dimension n, prove that V is isomorphic as a vector space to $F^n = \{(a_1, a_2, \ldots, a_n) \mid a_i \in F\}.$
- 2. (a) (8%) Let

$$A = \begin{bmatrix} -3 & 5 & -20\\ 2 & 0 & 8\\ 2 & 1 & 7 \end{bmatrix}$$

Find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

- (b) Let A and C be $n \times n$ matrices, and let C be an invertible.
 - i. (4%) Show that the eigenvalues of A and of $C^{-1}AC$ are the same.
 - ii. (8%) Prove that, if \mathbf{v} is an eigenvector of A with corresponding eigenvalue λ , then $C^{-1}\mathbf{v}$ is an eigenvector of $C^{-1}AC$ with corresponding eigenvalue λ . Then prove that all eigenvectors of $C^{-1}AC$ are of the form $C^{-1}\mathbf{v}$, where \mathbf{v} is an eigenvector of A.
- 3. (a) (10%) Find an orthonormal basis for the subspace spanned by the set {1, x, x²} of the vector space C_[-1,1] of continuous functions with domain −1 ≤ x ≤ 1, where the inner product is defined by < f, g > = ∫¹₋₁ f(x)g(x) dx.
 - (b) (5%) Subspaces U and W of \mathbb{R}^n are orthogonal if $\mathbf{u} \cdot \mathbf{w} = 0$ for all \mathbf{u} in U and all \mathbf{w} in W. Let U and W be orthogonal subspaces of \mathbb{R}^n , and let dim(U) = n dim(W). Prove that each subspace is the orthogonal complement of the other.
- 4. (a) (8%) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by

$$T((x_1, x_2, x_3)) = (x_1 + x_3, x_2, x_1 + x_3).$$

Find the eigenvalues λ_i and the corresponding eigenspaces of T. Determine whether the linear transformation T is diagonalizable.

(b) (7%) Let $U = [u_{ij}]$ be a square matrix with complex entries. Define the matrix U is unitary if $U^*U = I$, where $U^* = [\overline{u_{ij}}]^T$. Prove that the product of two $n \times n$ unitary matrices is also a unitary matrix. What about the sum of two $n \times n$ unitary matrices?

(背面仍有題目,請繼續作答)

编號:

38

国立成功大學一〇一學年度碩士班招生考試試題

共ン頁・第頁

系所組別: 數學系應用數學碩士班考試科目: 線性代數

考試日期:0226・節次:2

5. (a) (9%) Find a Jordan canonical form and a Jordan basis of

$A = \begin{bmatrix} 4 & 0 & 0 \\ 2 & 1 & 3 \\ 5 & 0 & 4 \end{bmatrix}$

(b) (6%) Let

$$A = \begin{bmatrix} 1 & 1 & -3 \\ 0 & 1 & 1 \\ 3 & -1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} -13 \\ 6 \\ -7 \end{bmatrix}$$

Find a permutation matrix P, a lower-triangular matrix L, and an upper-triangular matrix U such that PA = LU. Then solve the system $A\mathbf{x} = \mathbf{b}$, using P, L, and U.

6. (15%) Let V be a finite-dimensional complex or real vector space with inner product $\langle \cdot, \cdot \rangle$ and suppose that W is a subspace of V. Let

 $W^{\perp} = \{ \mathbf{v} \in V \mid \langle \mathbf{v}, \mathbf{w} \rangle = 0 \text{ for every } \mathbf{w} \in W \}.$

Show that W^{\perp} is a subspace of V and

$$V = W \oplus W^{\perp},$$

that is each $\mathbf{v} \in V$ can be written uniquely as a sum $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ where $\mathbf{v}_1 \in W$ and $\mathbf{v}_2 \in W^{\perp}$.