Work out all problems and no credit will be given for an answer without reason－ ing．

1．（a）（8\％）Let B be a subset of a vector space V ．Show that B is a basis for V if and only if every member of V is a unique linear combination of the elements of B ．
（b）（4\％）Let T be a linear transformation of a vector space V ．Prove that the set $\{\mathbf{v} \in V \mid T(\mathbf{v})=0\}$ ，the kernel of T ，is a subspace of V ．
（c）（8\％）Let V and W are vector spaces over a field F ．Define a vector space iso－ morphism from V to W is a one－to－one linear transformation from V onto W ．If V is a vector space over F of dimension n ，prove that V is isomorphic as a vector space to $F^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in F\right\}$ ．

2．（a）（ 8% ）Let

$$
A=\left[\begin{array}{ccc}
-3 & 5 & -20 \\
2 & 0 & 8 \\
2 & 1 & 7
\end{array}\right]
$$

Find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix．
（b）Let A and C be $n \times n$ matrices，and let C be an invertible．
i．（4\％）Show that the eigenvalues of A and of $C^{-1} A C$ are the same．
ii．（8\％）Prove that，if \mathbf{v} is an eigenvector of A with corresponding eigenvalue λ ，then $C^{-1} \mathbf{v}$ is an eigenvector of $C^{-1} A C$ with corresponding eigenvalue λ ． Then prove that all eigenvectors of $C^{-1} A C$ are of the form $C^{-1} \mathbf{v}$ ，where \mathbf{v} is an eigenvector of A ．

3．（a）（ 10% ）Find an orthonormal basis for the subspace spanned by the set $\left\{1, x, x^{2}\right\}$ of the vector space $C_{[-1,1]}$ of continuous functions with domain $-1 \leq x \leq 1$ ，where the inner product is defined by $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$ ．
（b）（5\％）Subspaces U and W of \mathbb{R}^{n} are orthogonal if $\mathbf{u} \cdot \mathbf{w}=0$ for all \mathbf{u} in U and all \mathbf{w} in W ．Let U and W be orthogonal subspaces of \mathbb{R}^{n} ，and let $\operatorname{dim}(U)=n-\operatorname{dim}(W)$ ． Prove that each subspace is the orthogonal complement of the other．
4．（a）（8\％）Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by

$$
T\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}+x_{3}, x_{2}, x_{1}+x_{3}\right) .
$$

Find the eigenvalues λ_{i} and the corresponding eigenspaces of T ．Determine whether the linear transformation T is diagonalizable．
（b）(7%) Let $U=\left[u_{i j}\right]$ be a square matrix with complex entries．Define the matrix U is unitary if $U^{*} U=I$ ，where $U^{*}=\left[\overline{u_{i j}}\right]^{T}$ ．Prove that the product of two $n \times n$ unitary matrices is also a unitary matrix．What about the sum of two $n \times n$ unitary matrices？

5．（a）（9\％）Find a Jordan canonical form and a Jordan basis of

$$
A=\left[\begin{array}{lll}
4 & 0 & 0 \\
2 & 1 & 3 \\
5 & 0 & 4
\end{array}\right]
$$

（b）（6\％）Let

$$
A=\left[\begin{array}{ccc}
1 & 1 & -3 \\
0 & 1 & 1 \\
3 & -1 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
-13 \\
6 \\
-7
\end{array}\right]
$$

Find a permutation matrix P ，a lower－triangular matrix L ，and an upper－triangular matrix U such that $P A=L U$ ．Then solve the system $A \mathbf{x}=\mathrm{b}$ ，using P, L ，and U ．

6．（ 15% ）Let V be a finite－dimensional complex or real vector space with inner product $\langle\cdot\rangle$,$\rangle and suppose that W$ is a subspace of V ．Let

$$
W^{\perp}=\{\mathbf{v} \in V \mid<\mathbf{v}, \mathbf{w}>=0 \text { for every } \mathbf{w} \in W\}
$$

Show that W^{\perp} is a subspace of V and

$$
V=W \oplus W^{\perp}
$$

that is each $\mathbf{v} \in V$ can be written uniquely as a sum $\mathbf{v}=\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}$ where $\mathbf{v}_{\mathbf{1}} \in W$ and $\mathrm{v}_{2} \in W^{\perp}$ ．

