1．（15）The continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property $|f(x)-f(y)| \geq|x-y|, \forall x, y \in \mathbb{R}$ ． Show that f is surjective．

2．（15）A function f is said to be Lipschitz continuous provided that there exists a constant c such that $|f(x)-f(y)| \leq c|x-y|, \forall x, y$ ．Prove or disprove the following assertions：
（a）（10）A differentiable function is Lipschitz continuous．
（b）（5）A Lipschitz continuous function is differentiable．
3．（15）Show
（a）(5)

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{n!} \tag{1}
\end{equation*}
$$

（b）（10）the common value of equation（1）is irrational．
4．（10）What is the Jacobian of $f(x, y)=\left(\sin \left(\frac{x+y}{2}\right), 1-\frac{x^{2}+y^{2}}{4}\right)$ ？
5．（10）Find the volume of the ellipsoid $(x+2 y)^{2}+(x-2 y+z)^{2}+3 z^{2}=1$ ．
6．（10）Is it possible for a subset of real number to have an empty interior and the boundary of which is the whole set？Justify your answer with a mathematical proof．

7．（15）A function is said to be conditionally integrable provided that it is improperly integrable but not absolutely integrable．Is the function $\sin x / x$ conditionally integrable on $[1, \infty)$ ？

8．（10）$D:=\left\{(x, y) \in \mathbb{R} \mid \sqrt{x^{2}+y^{2}}<\pi\right\}$ ．Define the function

$$
f(x, y)=\left\{\begin{array}{l}
0, \quad(x, y)=(0,0) \\
\frac{x^{2}+y^{2}}{\sin \left(\sqrt{x^{2}+y^{2}}\right)}, \quad(x, y) \in D \backslash\{(0,0)\}
\end{array}\right.
$$

Is f differentiable at $(0,0)$ ？

