系所組別：數學系應用數學碩士班
考試科別：線性代數

［3］考生注意：本試題不可使用計算機（马）

Notation．

－For any field F ，（1）F^{n} is the n－dimensional vector space over F ，（2）$F^{m \times n}$ is the set of all $m \times n$ matrices over F ，and（3）if $A \in F^{m \times n}$ ，then A^{T} denotes the transpose of A ．
－ \mathbb{R} ：the field of real numbers．
－ \mathbb{C} ：the field of complex numbers．
－For a matrix $A \in \mathbb{C}^{m \times n}, A^{H}$ denotes the conjugate transpose of A ．
－For a vector $z \in \mathbb{C}^{n}, z^{H}$ denotes the conjugate transpose of z ．
［15\％］1．For an element $z \in \mathbb{R}^{3}$ ，we denote by z_{1}, z_{2} ，and z_{3} the coordinates of z ．That is，$z=$ $\left(z_{1}, z_{2}, z_{3}\right)$ ．Which of the following subsets of \mathbb{R}^{3} are actually subspaces？Give your reasons． ［Note．There will be no points given if no reasons are given．］
（a）The set of vectors z with $z_{1}=z_{2}$ ．
（b）The set of vectors z with $z_{1}=1$ ．
（c）The set of vectors z with $z_{1} z_{2} z_{3}=0$ ．
（d）All vectors z that satisfy $z_{1}+z_{2}+z_{3}=0$ ．
（e）All vectors z with $z_{1} \leq z_{2} \leq z_{3}$ ．
$[10 \%] \quad$ 2．Let V be the vector space over \mathbb{R} spanned by the vectors $\boldsymbol{a}=(1,-1,0,0), \boldsymbol{b}=(0,1,-1,0)$ ， and $c=(0,0,1,-1)$ ．Find an orthonormal basis for V ．
［15\％］3．For $n \geq 2$ ，let F_{n} be the determinant of the $n \times n$ tri－diagonal matrix

$$
\left[\begin{array}{ccccc}
1 & -1 & & & \\
1 & 1 & -1 & & \\
& 1 & 1 & \ddots & \\
& & \ddots & \ddots & -1 \\
& & & 1 & 1
\end{array}\right] \in \mathbb{R}^{n} .
$$

For example，$F_{2}=\operatorname{det}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]=2$ and $F_{3}=\operatorname{det}\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1\end{array}\right]=3$ ．Also set $F_{0}=1$ and $F_{1}=1$ ．
（a）Show that $F_{n}=F_{n-2}+F_{n-1}$ for $n \geq 2$ ．
（b）Let $u_{n}=\left[\begin{array}{c}F_{n-1} \\ F_{n}\end{array}\right], n=1,2, \ldots$ ．Then $u_{n}=A u_{n-1}$ ．What is A ？
（c）Evaluate F_{100} ．
［15\％］4．Let A be the Markov matrix $A=\left[\begin{array}{ll}0.8 & 0.05 \\ 0.2 & 0.95\end{array}\right] \in \mathbb{R}^{2}$ ．Let $u_{0}=\left[\begin{array}{l}0.02 \\ 0.98\end{array}\right]$ ．For integers $k \geq 1$ ， define $u_{k}=A^{k} u_{k-1}$ ．Find $\lim _{k \rightarrow \infty} u_{k}$ ．
［15\％］5．Let $A \in \mathbb{R}^{n \times n}$ ．
（a）Prove that A^{T} and A have the same determinant．
（b）Prove that A^{T} and A have the same eigenvalues．
（c）Suppose taht A is a Markov matrix．That is，the sum of the entries of any column is 1 ， and there is at least one non zero entry in every row．Show that 1 is an eigenvalue of A ．
$[10 \%] \quad 6$. Let $f_{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}, i=1,2,3$ ，be given by

$$
\begin{aligned}
& f_{1}(x, y, z)=x-2 y \\
& f_{2}(x, y, z)=x+y+z \\
& f_{3}(x, y, z)=y-3 x
\end{aligned}
$$

（a）Show that f_{1}, f_{2} ，and f_{3} form a basis of the dual space of \mathbb{R}^{3} ．
（b）Find the dual basis of $\left\{f_{1}, f_{2}, f_{3}\right\}$ ．
［20\％］7．Let $A \in \mathbb{C}^{n \times n}$ with $A^{H}=A$ ，and let $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$ and $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ ．
（a）Prove $z A z^{H} \in \mathbb{R}$ ．
（b）Prove that every eigenvalue of A is real．
（c）Prove that if y and z are eigenvectors of A corresponding to distinct eigenvalues，then $y z^{H}=0$ ．

