第1頁，共1頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

Note： \mathbb{R} denotes the field of real numbers．
1．(10%) Are the vectors $(1,1,1,0),(0,0,1,1)$ ，and $(2,2,-1,-3)$ linearly independent in \mathbb{R}^{4} ？Justify your answer．
2．(15%) Find all possible real numbers x_{1}, x_{2}, x_{3} ，and x_{4} that satisfy the following system of linear equations：

$$
\begin{array}{r}
3 x_{1}+4 x_{2}-2 x_{3}+7 x_{4}=-2 \\
x_{1}+3 x_{2}+x_{3}+4 x_{4}=1 \\
2 x_{1}+2 x_{2}-2 x_{3}+4 x_{4}=-2
\end{array}
$$

3．(15%) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}-3 x_{2}-4 x_{3},-x_{1}+4 x_{2}+4 x_{3}, x_{1}+x_{2}+x_{3}\right) .
$$

Does there exist an ordered basis β for \mathbb{R}^{3} such that the matrix representation $[T]_{\beta}$ of T with respect to β is a diagonal matrix？Justify your answer．

4．（ 15% ）Let A be a real 5×5 matrix satisfying $A^{3}-4 A^{2}+5 A-2 I=O$ ，where I is the 5×5 identity matrix and O is the 5×5 zero matrix．Is the matrix $A^{4}+A^{3}-3 A^{2}-3 A$ invertible？Justify your answer．

5．(15%) A square matrix A is called an orthogonal matrix if $A^{t} A$ is the identity matrix， where A^{t} is the transpose of A ．Prove that every real 2×2 orthogonal matrix is either

$$
\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \text { or }\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

for some real number θ ．
6．(15%) Determine all inner products $\langle\cdot$,$\rangle on \mathbb{R}^{2}$ such that

$$
\langle(a, b),(-b, a)\rangle=0
$$

for all real numbers a and b ．
7．（15\％）Let T be a linear operator on a finite－dimensional real inner product space V ．Prove that if T is self－adjoint（i．e．，T is its own adjoint），then there exists an orthonormal basis for V consisting of eigenvectors of T ．

