編號: 39 國立成功大學105學年度碩士班招生考試試題

系 所:數學系應用數學碩士班

考試科目:高等微積分

考試日期:0228,節次:2

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- (1) (18 Points) True or false. If the statement is true, give a short proof; if the statement is false, give a counterexample.
 - (a) (6 Points) Any intersection of open subsets of \mathbb{R}^n is open in \mathbb{R}^n .
 - (b) (6 Points) Let A and B be two subsets of \mathbb{R}^n . Then $\operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B)$ where $\operatorname{cl}(A)$ is the closure of A in \mathbb{R}^n .
 - (c) (6 Points) Let $f:[0,1] \to \mathbb{R}$ be a continuous function. Define a sequence (a_n) of real numbers by $a_n = f\left(\frac{1}{n}\right)$ for $n \ge 1$. Then $\lim_{n \to \infty} a_n = f(0)$.
- (2) (10 Points) Let $f:(0,\infty)\to\mathbb{R}$ be the function

$$f(x) = \frac{1}{x^2}, \quad x > 0.$$

Prove or disprove that f is uniformly continuous on $(0, \infty)$.

- (3) (15 Points)
 - (a) (7 Points) Prove that series of functions

$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{2^n}$$

converges uniformly on $[0, 2\pi]$.

- (b) (8 Points) Evaluate $\int_0^{2\pi} f(x)^2 dx.$
- .(4) (12 Points) The Euclidean norm of a vector $x=(x_1,\cdots,x_n)$ in \mathbb{R}^n is

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}.$$

If S is a nonempty subset of \mathbb{R}^n and x_0 is a point of \mathbb{R}^n such that $x_0 \notin S$, the distance from x_0 to S is defined to be

$$d(x_0, S) = \inf\{\|x_0 - y\| : y \in S\}.$$

Let K be a (nonempty) closed and bounded subset of \mathbb{R}^n .

- (a) (5 Points) Let $f: K \to \mathbb{R}$ be the function $f(x) = ||x_0 x||$ for $x \in K$. Prove that f is continuous (use $\epsilon \delta$ definition).
- (b) (7 Points) Prove that there exists $y_0 \in K$ so that $d(x_0, K) = ||x_0 y_0||$. [Hint: Use (4a).]

編號: 3

國立成功大學105學年度碩士班招生考試試題

系" 所:數學系應用數學碩士班

考試科目:高等微積分

考試日期:0228,節次:2

第2頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

(5) (15 Points) Let U be an open subset of \mathbb{R}^n . A function $f: U \to \mathbb{R}^m$ is differentiable at $x_0 \in U$ if there exists a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{h\to 0} \frac{\|f(x_0+h)-f(x_0)-T(h)\|}{\|h\|} = 0.$$

In this case, the linear map T is denoted by $(Df)(x_0)$ and called the total derivative of f at x_0 . Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the map

$$f(x,y) = (x - y^2, x^2 + y^2).$$

- (a) (10 Points) Use definition to show that f is differentiable at (1,1).
- (b) (5 Points) Find the matrix representation of the linear map (Df)(1,1) with respect to the standard basis for \mathbb{R}^2 .
- (6) (15 Points)
 - (a) (7 Points) State the implicit function theorem.
 - (b) (8 Points) Can the equation

$$(x^2 + y^2 + z^2)^{1/2} = \cos(xz)$$

be solved uniquely for y in terms of (x, z) near (0, 1, 0)?

(7) (15 Points) Use Green's Theorem to evaluate the contour integral

$$\oint_C -x^2 y dx + xy^2 dy$$

where C is the circle $x^2 + y^2 = 1$ going couter-clockwise.