國立成功大學 110學年度碩士班招生考試試題

編 號: 35

系 所:數學系應用數學

科 目: 線性代數

日 期: 0203

節 次:第1節

備 註:不可使用計算機

國立成功大學110學年度碩士班招生考試試題

系 所:數學系應用數學

考試科目: 線性代數

考試日期:0203,節次:1

第|頁,共|頁

編號:

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Let $A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & -2 & 3 \\ 0 & -1 & 2 \\ 0 & 1 & 0 \end{bmatrix}$. Find an orthonormal basis (with respect to the standard inner product on \mathbb{R}^4) for the range of A. (15 points)

2. Let

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}.$$

Find the trace of the linear operator $X \mapsto AXB$ on $\mathbb{R}^{2\times 2}$. (10 points)

- 3. Let $M = \begin{bmatrix} A & B \\ C & 0 \end{bmatrix} \in \mathbb{C}^{2n \times 2n}$, where A, B, C are $n \times n$ matrices and 0 is the $n \times n$ zero matrix. Prove that M is invertible if and only if both B and C are invertible. (15 points)
- 4. Let $U \in \mathbb{C}^{n \times n}$ be an unitary matrix. Prove that there exists Hermitian matrix M such that $U = e^{iM}$. (15 points)
- 5. Let $P_2(\mathbb{R})$ be the real vector space of quadratic polynomials, and let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear transformation defined by

$$(Tf)(x) = f(x) + f'(x) + f''(x).$$

If β denotes a basis for $P_2(\mathbb{R})$, let us use $[T]_{\beta}$ to denote the matrix representation of T with respect to β .

- (a) Find $[T]_{\beta}$ with $\beta = (1, x, x^2)$. (10 points)
- (b) Is T diagonalizable? If yes, find the basis β for $P_2(\mathbb{R})$ such that $[T]_{\beta}$ is diagonal. If no, find the basis β such that $[T]_{\beta}$ is a Jordan form. (15 points)
- 6. (a) Give the 3×3 real matrix which is the rotation by an angle θ about the z-axis. (For this question you are allowed to give the answer directly without justification.) (5 points)
 - (b) Find the 3×3 real matrix which is the rotation by the angle $\pi/2$ about the axis along $(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$. (15 points)