國立成功大學 111學年度碩士班招生考試試題

編 號: 35

系 所: 數學系應用數學

科 目:線性代數

日 期: 0220

節 次:第1節

備 註:不可使用計算機

編號: 35

國立成功大學 111 學年度碩士班招生考試試題

系 所:數學系應用數學

考試科目:線性代數

考試日期:0220,節次:1

第1頁,共1頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. (12 points) Find the rank of the real matrix

$$\begin{bmatrix} 3 & 3 & -2 & -1 \\ 8 & 6 & -4 & 2 \\ -9 & -9 & 6 & 3 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

- 2. (10 points) Let A and B be 9×9 real matrices such that AB = -BA. Show that A or B is not invertible.
- 3. (16 points) Let \mathbb{R} denote the field of all real numbers, and let $T\colon \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by

$$T(a,b) = (3a + 5b, a - 2b)$$

for all $(a,b) \in \mathbb{R}^2$. Let $\beta = \{v_1,v_2\}$, where $v_1 = (1,-2)$ and $v_2 = (3,-1)$. Describe the matrix of T with respect to the ordered basis β for \mathbb{R}^2 .

4. Consider the real matrix

$$A = \begin{bmatrix} 2 & 0 & 14 \\ -7 & 16 & 7 \\ 0 & 0 & 16 \end{bmatrix}.$$

- (a) (10 points) Find all eigenvalues of A.
- (b) (16 points) Is it true that there exists a 3×3 real matrix B such that $B^4 = A$?

 Justify your answer.
- 5. Let V be the real vector space consisting of all $n \times n$ real matrices. For $A, B \in V$, define $\langle A, B \rangle$ to be the trace of AB^T . (Here B^T denotes the transpose of B.)
 - (a) (10 points) Show that $\langle \cdot, \cdot \rangle$ is an inner product on V.
 - (b) (10 points) Let $P \in V$ be a fixed invertible matrix, and let $T \colon V \to V$ be the linear transformation defined by $T(A) = P^{-1}AP$ for all $A \in V$. Describe the adjoint of T with respect to the inner product $\langle \cdot, \cdot \rangle$.
- 6. (16 points) Let F be any field, and let n be any positive integer. Suppose that A and B are $n \times n$ matrices over F such that A and B are diagonalizable and AB = BA. Show that there exists an invertible $n \times n$ matrix P over F such that both $P^{-1}AP$ and $P^{-1}BP$ are diagonal matrices.