國立成功大學 111學年度碩士班招生考試試題

編 號: 36

系 所:數學系應用數學

科 目: 高等微積分

日 期: 0220

節 次:第2節

備 註:不可使用計算機

國立成功大學 111 學年度碩士班招生考試試題

編號: 36 **国** 系 所:數學系應用數學

考試科目:高等微積分

考試日期:0220,節次:2

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Throughout the exam, the Euclidean spaces \mathbb{R}^n are all equipped with usual Euclidean metric $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$.

- 1. A vector field V on \mathbb{R}^3 is called *conservative* if $\mathbf{V} = \nabla f$ for some differentiable function f.
 - (a) (5 points) Prove that if a smooth vector field $\mathbf{V}=(V_1,V_2,V_3)$ (i.e. V_i 's are smooth) is conservative on some domain $U\subset\mathbb{R}^3$, then

$$curl~\mathbf{V} = \left(\frac{\partial V_3}{\partial y} - \frac{\partial V_2}{\partial z}, \frac{\partial V_1}{\partial z} - \frac{\partial V_3}{\partial x}, \frac{\partial V_2}{\partial x} - \frac{\partial V_1}{\partial y}\right) = (0,0,0)$$

on U.

- (b) (10 points) Is the converse of (a) true? Prove it or disprove with a counterexample.
- 2. (15 points) Let $\{K_{\alpha}\}_{\alpha \in A}$ be a family of compact subsets of a metric space (X,d) such that any finite intersection of K_{α} 's is nonempty (i.e. $\cap_{\alpha \in F} K_{\alpha} \neq \emptyset$ for all finite subset $F \subset A$), prove that

$$\bigcap_{\alpha\in A}K_{\alpha}\neq\emptyset.$$

3. (10 points) Prove, for s > 1, that

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = s \int_1^{\infty} \frac{[x]}{x^{s+1}} dx,$$

where [x] is the greatest integer $\leq x$.

- 4. (15 points) Let $\{f_n\}_n$ be a sequence of real-valued functions defined on a compact metric space (K,d) so that
 - $f_n \ge f_{n+1} \ge 0 \ \forall n$
 - $f_n \to 0$ pointwise.

Prove that f_n converges to 0 uniformly.

(Hint: Problem 2 can be helpful.)

編號: 36

國立成功大學 111 學年度碩士班招生考試試題

系 所:數學系應用數學 考試科目:高等微積分

考試日期:0220,節次:2

第2頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 5. (a) (5 points) State the Inverse Function Theorem for a function $F: \mathbb{R}^n \to \mathbb{R}^n$.
 - (b) (10 points) Use the $Rank\ Theorem$ below to prove the Inverse Function Theorem.

Rank Theorem: Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable function so that $DF_{\mathbf{p}}$ has rank k at some $\mathbf{p} \in \mathbb{R}^n$. Then, there exist open neighborhoods U of \mathbf{p} and V of $F(\mathbf{p})$, and C^1 maps

$$\varphi: U \to \varphi(U) \subset \mathbb{R}^n, \quad \psi: V \to \psi(V) \subset \mathbb{R}^m,$$

both invertible with C^1 inverses, so that

$$\psi \circ F \circ \varphi^{-1}(x_1, \dots, x_k, x_{k+1}, \dots, x_n) = (x_1, \dots, x_k, 0, \dots, 0).$$

- 6. (15 points) Let f(x,y) be a function on \mathbb{R}^2 such that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist everywhere and are both bounded, prove that f is continuous.
- 7. (15 points) Let $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ be a map so that

$$\|\varphi(\mathbf{x}) - \varphi(\mathbf{y})\| < c \|\mathbf{x} - \mathbf{y}\|$$

for some $c \in (0,1)$. Prove that there exists a unique point $\mathbf{x}_0 \in \mathbb{R}^n$ so that

$$\varphi(\mathbf{x}_0) = \mathbf{x}_0.$$