國立成功大學 113學年度碩士班招生考試試題

編 號: 35

系 所:數學系應用數學

科 目: 線性代數

日期:0202

節 次:第1節

備 註:不可使用計算機

國立成功大學 113 學年度碩士班招生考試試題

系 所:數學系應用數學

考試科目:線性代數

第1頁,共1頁

考試日期:0202,節次:1

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

All vector spaces are finite dimensional over the base field.

Let K be a field. The space of $n \times n$ matrices with entries in K is denoted by $\mathcal{M}_n(K)$. An operator on a K-vector space V is a K-linear transformation from V to itself.

1. (10 points) Let $M \in \mathcal{M}_{2n}(\mathbb{R})$ be a matrix that satisfies $M^T\Omega M = \Omega$ where

$$\Omega = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}.$$

Show that M is invertible with inverse $M^{-1} = \Omega^T M^T \Omega$.

2. Let
$$A, B, C, D \in \mathcal{M}_n(K)$$
 and let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_{2n}(K)$.

(a) (10 points) When C = 0, show that

$$M = \begin{pmatrix} I_n & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} I_n & B \\ 0 & I_n \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & I_n \end{pmatrix}.$$

Deduce that $\det M = \det A \cdot \det D$.

- (b) (15 points) Show that if A is invertible and AC = CA, then $\det M = \det(AD CB)$.
- 3. (15 points) Let

$$M = \begin{pmatrix} 5 & 4 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ -1 & -1 & 3 & 0 \\ 1 & 1 & -1 & 2 \end{pmatrix}.$$

Find $D, U \in \mathcal{M}_4(\mathbb{R})$ such that M = DU = UD, D is diagonalizable, and $U - I_4$ is nilpotent.

4. (10 points) Let A, B, C be in $\mathcal{M}_n(K)$. Show that the traces

$$\operatorname{Tr} A[B,C] = \operatorname{Tr} B[C,A] = \operatorname{Tr} C[A,B]$$

where [M, N] = MN - NM for any $M, N \in \mathcal{M}_n(K)$.

- 5. (15 points) Let V be an inner product space over \mathbb{C} . An operator T on V is positive if it is self-adjoint and $\langle Tv,v\rangle\geq 0$ for all $v\in V$. Show that an operator T on V is positive if and only if there exists a unique positive operator R on V such that $R^2=T$.
- 6. Let V be a \mathbb{C} -vector space of dimension n and let T, U be operators on V. Assume that the minimal polynomial of T has degree n and that TU = UT. Let $\mathbb{C}[x,y]$ be the polynomial ring of two variables. Prove the following statements.
 - (a) (10 points) There exists $v \in V$ such that $\{v, T(v), \dots, T^{n-1}(v)\}$ form a basis for V.
 - (b) (10 points) The two vector spaces

$$\mathbb{C}[T,U] := \{ p(T,U) \mid p(x,y) \in \mathbb{C}[x,y] \} \text{ and } \mathbb{C}[T] := \{ p(T) \mid p(x) \in \mathbb{C}[x] \}$$

are equal.

(c) (5 points) The dimension of $\mathbb{C}[T,U]$ is less than or equal to n.