國立成功大學 114學年度碩士班招生考試試題

編 號: 37

系 所:數學系應用數學

科 目: 高等微積分

日 期: 0211

節 次:第2節

注 意: 1.不可使用計算機

2. 請於答案卷(卡)作答,於 試題上作答,不予計分。 1. (20 points) Let $\alpha \in \mathbb{R}$ and $f: \mathbb{R}^2 \to \mathbb{R}$ be a function defined by

$$f(x,y) = \begin{cases} |xy|^{\alpha} \sin \frac{1}{x^2 + y^2} & \text{when } (x,y) \neq (0,0) \\ 0 & \text{when } (x,y) = (0,0) \end{cases}$$

Find all possible α such that f is differentiable at (0,0).

2. (10 points)

Consider the following set:

$$L := \{x \in [0, 1] \mid x = 0.0b_100b_2000b_3... \text{ where } b_i \in \{0, 3\} \text{ for all } i \in \mathbb{N}\}.$$

Or equivalently, we can define $x \in L$ when $x = 0.a_1a_2a_3...$ where

$$a_n = \left\{ \begin{array}{l} \alpha_n \in \{0,3\} \text{ if } n = \frac{k(k+1)}{2} + k - 1 \text{ for some } k \in \mathbb{N}; \\ 0 \text{ otherwise.} \end{array} \right.$$

Prove that

- (a). (5 points) L is perfect, i.e., L is closed and all elements in L are limit points of L.
- (b). (5 points) Find a perfect set by shifting L which contains no rational numbers.
- 3. (10 points) Let $E \subset \mathbb{R}^2$ be

$$E = \{(0, y) | y \in [-1, 1]\} \cup \left\{ \left(x, \cos \frac{1}{x} \right) \middle| x \in (0, \pi^{-1}) \right\}.$$

- (a). (5 points) Prove that E is connected.
- (b). (5 points) Prove that E is path-connected, i.e., for any $x, y \in E$, there exists a continuous $f: [0,1] \to E$ satisfies f(0) = x and f(1) = y.
- 4. (20 points) Let $f_n(x) = \sum_{k=1}^n k^{-\frac{3}{2}} (kx [kx])$. Here [x] is the integer part of x.
 - (a). (6 points) Prove that $\{f_n(x)\}$ converges uniformly to some function f on
 - (b). (7 points) Prove that the discontinuities of f form a countable dense set.
 - (c). (7 points) Prove that f is Riemann-integrable on every closed interval.
- 5. (20 points) Let f be a Riemann integrable function defined on [a, b] and $g \in C^0(\mathbb{R})$ be a periodic function with period 1. Prove that

$$\lim_{k \to \infty} \int_a^b f(x)g(kx)dx = \int_a^b f(x)dx \int_0^1 g(x)dx.$$

6. (20 points) Let $u \in C_0^3(\mathbb{R}^3)$ and $\Delta u = f$. Prove that

$$\sum_{j=0}^{2} \int |\nabla^{j} u|^{2} \le 7 \left(\sum_{j=0}^{1} \int |\nabla^{j} f|^{2} + \int |u|^{2} \right).$$