

1. Solve the following problems:

(a)
$$y'(t) + 2y(t) - 8 \int_0^t y(s) ds = -2H(t), \quad y(0) = -5, \text{ where } H(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$$

(b)
$$y'' + (y')^2 + y = 0$$
, $y(0) = \frac{1}{2}$, $y'(0) = 0$. (10%)

2. Construct the Green's function of the equation

$$y'' + 2y' + 2y = 0$$

with the boundary conditions $y(0) = y(\frac{1}{2}\pi) = 0$, and then find the solution of the equation y"+2y'+2y=f with the above boundary conditions. (20%)

- 3. Find the equation of the family of curves which have the property that the tangent at any point P determines with the coordinate axes a triangle whose area is equal to twice the area of the rectangle determined by P and the coordinate axes. (20%)
- 4. Let L be a differential operator defined by Lu = (pu')' + qu, where p is a continuously differentiable function and q a continuous function defined on (a,b) and the domain of L is $C^2(a,b)$, the space of twice continuously differential functions defined on (a,b).
- (a If u_1 , u_2 are solutions of Lu=0, show that $p(u_1u_2-u_2u_1)$ is a constant. (5%)
- (b Suppose that $p \neq 0$ in (a,b). If the two solutions u_1 and u_2 of Lu=0 vanish at some point in (a,b), show that u_1 and u_2 are dependent in (a,b).
- 5. Consider the linear system $\vec{x}'(t) = A\vec{x}(t)$, where $\vec{x}(t) = (x_1(t), ..., x_n(t))$, x_j 's are continuously differentiable functions defined on R^1 and A is a n by n constant matrix.
- (a Show that there is a unique n by n matrix function G(t) such that G(0)=I, the identity matrix on R^n , and G'(t)=AG(t). (4%)
- (b Show that G(t+s)=G(t)G(s), AG(t)=G(t)A, $G(-t)=G(t)^{-1}$ and $G(t-s)=G(t)G(s)^{-1}$. (6%)
- (c When n=2 and A= $\begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$, find G(t). (10%)

國立成功大學七八學年度應用故學考試(常從分才程 試題)第2頁

(d) Let A be the matrix as given in (c) of Problem 5. Denote by W the class of continuous \mathbb{R}^2 -valued functions $\mathbf{x}(t) = (\mathbf{x}_1(t), \mathbf{x}_2(t))$ and denote by the class of those functions in W such that $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$ is continuously differentiable and $\mathbf{x}(0) = 0$. Define the operator L by $\mathbf{L}\mathbf{x} = \mathbf{x}' - \mathbf{A}\mathbf{x}$.

Show that L is injective from V onto W and then find the inverse operator cf L. $\hspace{1cm} \text{(10\%)}$