國立成功大學七七人學年度發用数學獨議試(常徽分子程 試題)第1頁

- 1. (A) Jse two different methods to solve y'' = f(x), y(0) = y'(0) = 0, where f is a continuous function.
 - (B) Determine the interval of x for which the solution of the following equation is defined: $x^2(1+y^2) dx + 2y dy = 0, \quad y(0) = 1.$
- 2. Solve the following three equations:
 - (A) $\frac{d^{n+1}y}{dx^{n+1}} 2\frac{d^ny}{dx^n} = 5$, where *n* is a positive integer; 10%
 (B) |xy'' + 2y' y = 0; 10%
 (C) $y' y = 2\delta(x 2)$, y(0) = y'(0) = 0, where δ is the Dirac δ -function. 10%
- 3. (A) Let u and v be real linearly independent solutions of a(x)y'' + b(x)y' + c(x)y = 0, where
 a, b, and c are real functions. Show that y₁ = u + iv and ȳ₁ = u iv (i.e. ȳ₁ is the complex conjugate of y₁) are complex solutions. Also show that the general complex solution is y = c₁y₁ + c₂ȳ₁, where c₁ and c₂ are arbitrary complex numbers.
 - (B) Show that $y = x^{t+1}$ satisfies $x^2y'' xy' + 2y = 0$. What are real solutions of the equation? 10%
- 4. (A) Let A be an n by n constant matrix. Show that the general solution of the differential equation $\frac{d\vec{x}(t)}{dt} = A\vec{x}(t)$ is given by $\vec{x}(t) = (\exp(tA))\vec{c}$, where \vec{c} is an arbitrary constant vector. The unique solution of the differential equation which also satisfies the initial condition $\vec{x}(t_0) = \vec{x}_0$ is given by $\vec{x}(t) = (\exp((t-t_0)A))\vec{x}_0$.
 - (B) Solve $\frac{d\hat{x}}{dt} = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix} \hat{x}, \ \hat{x}(0) = \begin{bmatrix} -1 \\ 7 \end{bmatrix}$.
- 5. Find the steady-state solution to the equation $\ddot{x} + 2\dot{x} + 2x = 2\cos(3t)$. Also estimate the earliest time beyond which the transient solution remains less than 0.01, if we are given the initial conditions x(0) = 1, $\dot{x}(0) = 0$.