國立成功大學八十學年度應数所入字考試(常微分方程試題)等,頁

1. Find the general solutions for the following equations.

(a)
$$y'(x) = 1 + \exp(x + y + 1)$$
. (10%)

(b)
$$xdy - ydx = (xy)^{\frac{1}{2}}dx$$
 (10%)

(c)
$$x^2y'' + 7xy' + 9y = 0$$
 . (10%)

2. Find the solution of the initial value problem

$$y'' + 2y' + 2y = \delta(t-1)$$
, $y(0) = 1$, $y'(0) = 0$. (10%)

3. Consider the following system:

$$\vec{x}' = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix} \vec{x}$$
, where $\vec{x} = (x_1, x_2)^{\dagger}$.

- (a) Find a fundamental set of solutions for the system of equations. (15%)
- (b) Let G(t) be the fundamental matrix such that G(0)=I. Find the value for

$$\int_{\mathbb{R}^{2}} \exp(-|G(1)\vec{x}|^{2}) d\vec{x} ,$$
 where $d\vec{x} = dx_{1} dx_{2}$. (10%)

4. Cons.der the equation on an interval [0,c]

$$L[y] = y'' + ay' + by = 0$$

where a, b, c are constant. Suppose that Z(t) is the solution satisfying the initial conditions y(0)=0, y'(0)=1. Define the mapping G by

$$Gf(t) = \int_0^t Z(t-s)f(s)ds$$

for all continuous functions f on [0,c]. Show that L[Gf]=f. (10%)

Let L[y] = -[py']' + qy, where p(x) and q(x) are continuous functions on [0,1] and q(x) > 0, p(x) > 0. Let \mathcal{M} denote the class of twice continuously differentiable functions y satisfying the following boundary conditions:

$$ay(0) + y'(0) = 0$$

 $by(1) + y'(1) = 0$.

(a) Show that $\langle L[u], v \rangle = \langle u, L[v] \rangle$, for all u, v in $\mathcal M$, where

$$\langle \mathbf{u}, \mathbf{v} \rangle = \int_0^1 \mathbf{u}(t) \overline{\mathbf{v}(t)} dt. \tag{10\%}$$

- (b) If $i \le 0$, $b \ge 0$, show that all eigenvalues of L (with domain $\mathcal M$) are positive. (10%)
- (c) Show that all the eigenvalues of L (with domain $\mathfrak M$) are real for arbitrary real number a and b.