- 1. (a) Let Z be a random variable with finite first moment. Show that f(b) = E|Z-b| is minimize when b = any median of the distribution of Z.
 - (b) Consider the loss function $L(\theta, a) = |\theta a|$, X is a random variable having a uniform distribution on the interval $(0, \theta)$. Find a Bayes estimate of θ with respect to $g(\theta) = \theta e^{-\theta}$, $\theta > 0$.
- 2. Let X_1, \dots, X_n be a sample from the uniform $U(0, \, \theta)$ population, where $0 < \theta < \infty$.
 - (a) Show that $M_n = \max(X_1,...,X_n)$ is a sufficient complete estimate of θ . 10%
 - (b) Find the uniform minimum variance estimate of θ .
- 3. Consider the simple linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \quad i = 1,...,n$$

where β_0 , β_i are parameter, X_i are known constants, ϵ_i are independent $N(0, \sigma^2)$, σ^2 is a unknown parameter.

- (a) Find the maximum likelihood estimates of β_0 , β_1 and σ^2 .
- (b) Derive a $100(1-\alpha)\%$ confidence interval of β_1 .
- Let $X_1,...,X_n$ be a sample from the normal $N(\mu, \sigma^2)$, where μ, σ^2 are unknown parameters.
 - (a) Find the likelihood ratio (L.R.) test for $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$ where μ_0 is a known constant.
 - (b) Find the L.R. test for $H_0: \sigma = \sigma_0$ vs $H_1: \sigma \neq \sigma_0$ where σ_0 is a known constant.
- ξ . (a) Define the Fisher's information (about θ).
 - (b) Let $I_{\widehat{X}}(\theta)$ be the Fisher's information (about θ) contained in the sample $\widehat{X} = (X_1, ..., X_n)$, and $I_T(\theta)$ be the Fisher's information (about θ) provided by T, where $T = T(\widehat{X})$ is a sufficient statistic of θ . Show that $I_T(\theta) = I_{\widehat{X}}(\theta)$. 10%

033